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A B S T R A C T

Fifth generation (5G) network and beyond envision massive Internet of Things (IoT) rollout to support dis-
ruptive applications such as extended reality (XR), augmented/virtual reality (AR/VR), industrial automation,
autonomous driving, and smart everything which brings together massive and diverse IoT devices occupying
the radio frequency (RF) spectrum. Along with the spectrum crunch and throughput challenges, such a massive
scale of wireless devices exposes unprecedented threat surfaces. RF fingerprinting is heralded as a candidate
technology that can be combined with cryptographic and zero-trust security measures to ensure data privacy,
confidentiality, and integrity in wireless networks. Motivated by the relevance of this subject in the future
communication networks, in this work, we present a comprehensive survey of RF fingerprinting approaches
ranging from a traditional view to the most recent deep learning (DL)-based algorithms. Existing surveys have
mostly focused on a constrained presentation of the wireless fingerprinting approaches, however, many aspects
remain untold. In this work, however, we mitigate this by addressing every aspect – background on signal
intelligence (SIGINT), applications, relevant DL algorithms, systematic literature review of RF fingerprinting
techniques spanning the past two decades, discussion on datasets, and potential research avenues – necessary
to elucidate this topic to the reader in an encyclopedic manner.
1. Introduction

Radio frequency (RF) fingerprinting – a form of signal intelligence
– refers to the methodology whereby the hardware intrinsic charac-
teristics of the transmitter which are unintentionally embedded in the
transmitted waveform are extracted to aid the identification of the
transmitter hardware by a passive receiver. Due to its unique ability
to identify transmitting device, RF fingerprinting is envisioned as a
key enabler for device authentication and access control to reduce the
vulnerability of beyond 5G wireless networks to node forgery or insider
attacks [1].

With the proliferation of wireless devices and the increased adop-
tion of Internet-of-Things (IoT) devices for smart home, industrial
automation, smart metering, etc., the beyond 5G network is expected
to support ultra-dense device connectivity which is 10× that of 5G [2].
Moreover, with such overwhelming device density the threat surfaces
of the network are bound to increase. Therefore, security and privacy
are the crucial inevitable aspects beyond 5G (6G) will need to ad-
dress. Especially the 6G enabling technologies such as ultra-massive
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multiple-input multiple-output (UM-MIMO), visible light communica-
tion (VLC), terahertz (THz) communication, among others, introduce
new realm of security challenges. Even in 5G networks, the OpenFlow
implementation of the software defined network (SDN) makes it vul-
nerable to attacks from malicious applications. Further, the network
function virtualization (NFV) presents security risks as the function is
being migrated from one platform to another [3]. With the envisioned
device density of the beyond 5G network, such vulnerabilities will
only increase. The security threats can perhaps be best attributed to
two causes; massive device density and diversity with respect to the
applications as well as the hardware.

The hardware intrinsic features of device form the fingerprint or
the signature unique to that device. RF fingerprinting is consequently
viewed as the prospective enablers to address and mitigate the ac-
cess control and device authentication challenges of the beyond 5G
network. For the purpose of clarity, we define RF fingerprinting as
a composite of three steps; feature identification, feature extraction,
and device identification. It must be emphasized that these features
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Fig. 1. Overview of the organization of the article.
are location-independent and ingrained to the chipset. Specifically, the
imperfections in manufacturing the microcircuit parts such as power
amplifiers, filters, clocks, etc., lead to broad variations in the phase
offset, clock skew, among others. Another aspect that could serve as fea-
tures are the vendor-specific implementations of wireless standards [1].
But such features could easily vary with firmware and software up-
grades of the chipset. Clearly, the device-specific features would serve
as a pronounced invariant feature set.

Despite several device fingerprinting works, a comprehensive sur-
vey encompassing the evolution of fingerprinting algorithms from prin-
cipled to deep learning based approaches is lacking. The contributions
and scope of this article is discussed in detail here to portray its
relevance in the present era of evolving wireless networks.

1.1. Scope of the article

The objective of this article is to present a comprehensive view
of the state-of-the-art wireless device fingerprinting algorithms while
also provide sufficient background on the subsidiary signal intelligence
domains — modulation and wireless protocol classification. Although
there has been numerous articles on deep learning for other RF sig-
nal intelligence approaches (modulation and wireless protocol classi-
fication) [4–14], a comprehensive presentation spanning conventional
principled approaches as well as supervised deep learning for RF fin-
gerprinting is lacking. We attempt to bridge this gap by discussing the
following key aspects:

(1) A succinct and categorized layout of the related research in
the field of RF signal intelligence (SIGINT) to provide relevant
background to the reader. Here, we present a preview of the
various methods – spanning conventional and deep learning –
for automatic modulation classification (AMC), wireless protocol
recognition, before going to a illustrative discussion on the RF
fingerprinting applications as well as approaches.

(2) Some of the key application domains of RF signal intelligence in
this emerging revolutionary communication era where billions
of wireless devices including diverse IoT emitters coexist. This
aspect presents the viewer with critical wireless network appli-
cation areas for a practical insight of the presented RF signal
intelligence methods.
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(3) A qualitative discussion on the traditional approaches for RF
fingerprinting categorized into modulation, statistical, transient,
wavelet, and other approaches.

(4) A deep dive into the state-of-the-art deep learning methods for
RF fingerprinting including an overview of the prominent deep
learning approaches in order to assist researchers in applying
them for RF signal intelligence.

(5) A detailed account of the various open-source datasets tailored
to equip researchers with comprehensive knowledge to delve
into applied RF fingerprinting research.

(6) We motivate further research in this realm by presenting open
research challenges and future directions.

We emphasize here that unlike existing surveys, our article is com-
prehensive in presenting all aspects of RF fingerprinting comprising
a glance into background on RF signal intelligence, the evolution
towards deep learning approaches for RF fingerprinting including the
progress on conventional principled methods. For completeness and to
benefit beginners, we provide a tutorial of the relevant deep learning
techniques.

Most of the existing surveys related to RF fingerprinting presents
only a narrow scope. Specifically, a qualitative analysis of all RF signal
intelligence aspects including AMC, wireless protocol recognition, and a
quantitative discussion on key deep learning approaches have not been
widely investigated to date in the current literature. In [15], the various
techniques of identifying a mobile phone by fingerprinting the built-in
components, such as camera, micro-electro-mechanical systems, speak-
ers, microphone, and RF frontends have been discussed. In contrast,
we attempt to cover all RF emitters such as software-defined radios
(SDRs), unmanned aerial vehicles (UAVs), and other consumer-off-the-
shelf (COTS) devices including mobile phones. The survey in [16]
presents a short account of the RF fingerprint extraction and authen-
tication methods with an emphasis on device authenticity — legal or
illicit. Another survey in [17] reviews spoofer detection methods that
leverages RF fingerprinting with special emphasis on Global Navigation
Satellite System (GNSS) emitters. Although this work presents a broader
scope in contrast to [15,16], it lacks a thorough presentation of all
aspects of RF signal intelligence. One other survey in [18] discusses the
taxonomy of wireless device fingerprinting along with brief account on
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fingerprinting algorithms that are classical white-list and unsupervised
learning-based. Our article goes beyond these works in providing the
reader all aspects of RF signal intelligence including crossovers between
traditional and deep learning based RF signal intelligence approaches.
Unlike existing surveys which only provides a very brief (2–3 sentences)
discussion on the reviewed articles, we dive into the reviewed works
in the vast literature to provide a succinct excerpt on each. Further,
the application scope of these signal intelligence techniques are not
elaborated in any other existing surveys. The ultimate objective of this
article is to provide an encyclopedic guide of RF fingerprinting that
encompasses the basics of key supervised deep learning techniques as
well as an extensive review of the state-of-the-art RF signal intelligence.

1.2. Survey organization

We structure our article in an organized hierarchical manner: Sec-
tion 2 introduces the readers to the two subsidiary domains of RF
signal intelligence and reviews the traditional as well as deep learning
based automatic modulation and wireless protocol classification. The
key application areas of the discussed RF fingerprinting methods are
briefly discussed in Section 3 to supplement practical insight to the re-
searchers and practitioners allowing them to explore the applicability.
We begin the RF fingerprinting survey by elaborating on the principled
approaches first in Section 4. We have categorized the traditional
approaches based on the fingerprinted characteristics into modulation,
statistical, transient, wavelet, and other miscellaneous methods to en-
able a sectioned and comparative discussion of the vast literature on
traditional techniques. Next, we present an illustrative discussion on
the state-of-the-art deep learning-based RF fingerprinting techniques
in Section 5. We have segmented this section into two where the first
part reviews the key deep learning concepts to present contextual walk-
through for the readers, followed by the second part which shows how
these deep learning techniques are applied to the RF fingerprinting
domain. Further, we educate the readers on the available open-source
datasets for training deep learning models to perform RF fingerprinting.
Finally, we aim to spur future research in this domain by summarizing
a few open questions and challenges in Section 6. We also layout the
organization in a pictorial manner in Fig. 1.

2. Glance into RF signal intelligence

RF signal intelligence is defined as the field of research and appli-
cation that focuses on extracting signal characteristics such as modula-
tion, bandwidth, center frequency, protocols, emitter identity, among
others from unknown RF signals in the spectrum of interest. This ex-
traction can be performed under various levels of cooperation or prior
knowledge based on the application at hand. The most challenging
version is under the assumption of no prior information or cooperation
which is often referred to as blind RF signal intelligence.

This area of research is further divided into different categories
based on the task performed. Perhaps the most popular and widely
researched task is that of AMC and then wireless signal/protocol clas-
sification. One common theme between these classification tasks are
the fact that the signals itself are evidently different from each other in
these classification tasks making them a relatively easier task compared
to RF fingerprinting where identical devices could be transmitting
same waveform with identical configurations. Here for the benefit of
the readers, we provide the background information of the two most
common signal intelligence classes (AMC and signal type classification).
This is also for the readers to relate to the overall RF signal intelligence
research domain while reviewing the more in-depth survey of RF
fingerprinting approaches.
3

Fig. 2. Evolution of AMC approaches.

2.1. Automatic modulation classification

As discussed earlier, due to the extensive attention this area of
research has garnered, we organize this section based on the evolution
seen in AMC techniques depicted in Fig. 2.

Traditional Approaches: AMC can be broadly categorized into
two classes; (i) likelihood-based methods [19–24] and (ii) feature-
based [25–28]. There have been several attempts to combine the two
approaches to possibly extract the benefits of both approaches [29].
Likelihood-based approaches can provide optimal performance in the
Bayesian sense but are often computationally demanding [29,30]. On
the other hand, feature-based classifiers can provide near optimal per-
formance while being computationally efficient if carefully designed.
Note here that the requirement of being ‘‘carefully designed’’ is perhaps
the weakness of traditional feature-based approaches. It is often possi-
ble to design the classifier which performs extremely well under certain
assumptions in simulations or laboratory settings but fail under real-
world scenarios or when the operational environment changes. In other
words, for AMC to be suitable for real-world approaches, it is important
for the classifiers to generalize well to various operating scenarios and
environments.

Neural network with expert-feature: Since the problem structure
of feature-based classifiers are similar to the function approximation
schema of the recently revitalized supervised machine learning, it was
inevitable for these techniques to be leveraged for AMC. Consequently,
in recent years, different machine learning techniques have been em-
ployed to determine the modulation format of the unknown signal via
classification. During the initial stages of applying supervised learning
for AMC, feature-engineered methodology was adopted as opposed
to utilizing raw in-phase and quadrature (IQ) samples. This includes
the use of support vector machines (SVMs) [31] and ANNs [6,32,33].
In [32], the authors perform a twelve-class modulation classification
with high accuracy over a wide range of signal-to-noise ratio (SNR)
values using a multilayer perceptron (MLP). In [33], the authors eval-
uate two different ANN architectures trained by the backpropagation
method using the standard gradient descent (GD) learning algorithm by
using six features. Similarly, [6] achieves high accuracy under low SNR
conditions in identifying eight modulation schemes. All these studies
are limited to simulations and not evaluated on actual hardware.
In [30], authors elaborate the confronted challenges while transition-
ing their solution from simulation to hardware implementation. In
short, due to the assumptions and unanticipated signal distortions that
are overlooked during simulations, over-the-air performance of AMC
techniques may experience degradation in real deployment.

The superior feature extraction capability of convolutional neural
networks (CNNs) in contrast to ANNs led to several works leveraging
CNNs for modulation or signal classification [5,9,10,34–37]. The au-
thors of [34] evaluated the performance of CNNs – GoogLeNet [38]
and AlexNet [39] architectures – in predicting modulation formats on
a dataset comprising eight classes by feeding constellation images as
input. However, the models demonstrated sensitivity to image prepro-
cessing factors such as image resolution, cropping size, selected area,
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etc., and achieved an accuracy below 80% at 0 dB SNR. We profess and
attribute that this could be due to the adoption of heavy architectures
suited for computer vision problems rather than for the RF applica-
tion. A feed-forward feature-based neural network [40] was shown
to achieve a classification accuracy of 98% on seven modulations on
a USRP software-defined radio testbed. Time–frequency images were
used as input for a CNN architecture to identify seven radar waveform
classes in [41]. Along a similar trend, cyclic spectrum images were used
as CNN input to obtain a seven-class modulation recognition accuracy
of 95% at SNRs above 2 dB in [35]. We would like to emphasize
here that these works rely on handcrafted features to train the neural
network which limits the generalization capability of the network as it
could have from raw IQ samples.

Neural network with raw IQ: A CNN architecture which classifies
5 communication waveforms by utilizing raw IQ samples was explored
in [4]. Although the model achieves a 100% accuracy it considers
very limited number of waveforms of the same carrier frequency and
bandwidth. The authors of [5] trained a CNN to achieve an accuracy of
83.4% at 18 dB in classifying 11 modulations by feeding raw IQ sam-
ples. In [36], a modified ResNet architecture was shown to achieve a
95.6% accuracy at 10 dB by learning from raw IQ samples in identifying
24 modulation classes.

2.2. RF signal recognition

Wireless signal recognition is a signal (wireless standard or proto-
col) recognition method which involves identifying the wireless stan-
dard with which the RF waveform is generated. The authors of [9]
studied wireless interference detection by performing a 15-class iden-
tification comprising three wireless standards – IEEE 802.11 b/g, IEEE
802.15.4, and IEEE 802.15.1 – occupying different frequency channels.
In a similar sense, [10] adopted a CNN architecture to address the
spectrum crunch in the industrial, scientific, and medical (ISM) band by
classifying seven classes belonging to Zigbee, WiFi, Bluetooth, and their
cross-interferences. However, the model required operation in a high
SNR regime for a 93% accuracy. In [42], the authors use a distance-
based support vector data description (SVDD) algorithm to recognize
low, slow, and small unmanned aerial vehicles (LSSUAVs) among the
signals in the 2.4 GHz band by generating a hash fingerprint. The
proposed method recognized LSSUAV signals without any mistakes and
falsely recognized IEEE 802.11b and IEEE802.11n signals as LSSUAV
13.5% and 0% of the time respectively in an indoor environment. Sim-
ilarly, the authors of [43] investigate recognition of UAV video signals
in the presence of WiFi interference. Using random forest classifier,
the authors show that the method can recognize UAV video signal in
presence of WiFi interference with an accuracy of 100% indoors and
96.26% when the UAV is 2 km from the receiver. In [7], the authors
implement a CNN model to identify the presence of radar signals in
the radio spectrum with interference from LTE and WLAN signals.
The authors achieve a classification accuracy of 99.6% while using
amplitude and phase shift components of the signals in the dataset.
The authors in [44] train CNN classifiers using time domain features to
recognize WiFi, Zigbee, and Bluetooth devices operating in the 2.4 GHz
band. The results demonstrate that the proposed method is capable of
recognizing with an accuracy ≥ 95% for SNR greater then 5 dB.

2.3. Single model to extract more than modulation

A multi-task learning (MTL) model that can learn to recognize
more than one task – modulation and signal (protocol) recognition –
was proposed for the first time in [45,46]. This was the first work
to consider both radar and communication waveforms to address the
diverse and heterogeneous signal types encountered in practical de-
ployment. Here, the authors train a CNN to perform two related tasks
based on a single raw IQ input. The two tasks are assigned weights to
formulate the weighted sum loss function and the model was trained
4

Fig. 3. Flowgraph for identification, authentication and authorization.

with backpropagation. The authors emphasize the significance of de-
signing lightweight models from the inception and provide real-world
experimental evaluation with over-the-air collected waveforms under
varying signal strengths. The evaluations demonstrated high-speed in-
ferences The lightweight MTL performs faster inferences at the rate of
8.4 ms on an Intel Core i5-3230M CPU, consuming up to 90.5% lesser
memory requirement in contrast to the benchmark. Further, the model
was further compressed by performing INT8 quantization to showcase
the computational savings for resource-constrained edge deployment
platforms. The uncompressed 32-bit floating point (FP32) model was
compressed 11.8× by INT8 quantization with no significant accuracy
loss to report.

3. Applications

3.1. RF device identification and authentication

Device identification and authentication are essential parts of man-
aging wireless network. The proliferation of wireless devices in our
environment is making this a daunting task due to the ever growing
attack surfaces in the context of the burgeoning IoT economy. It is also
often the case that identification and authentication are inaccurately
used interchangeably causing further confusion [47]. First, we provide
definition for identification, authentication, and authorization along
with Fig. 3 to encompass the overall process. Identification can be seen
as a subtask of the overall authentication and authorization process.
The definitions are provided below [48],

(1) Identification is the ability to uniquely identify a user or device
based on a unique ID such as MAC address, IMEI (Interna-
tional Mobile Equipment Identity) or MEID (Mobile Equipment
Identifier) for phones.

(2) Authentication is the ability to prove that a user/device is gen-
uinely who that user or device claims to be.

(3) Authorization is the process of evaluating whether a authenti-
cated user/device has legitimate permission to access a resource
or service.

Traditionally, authentication involves handshake process between
the device that intends to gain access and the network component that
verifies the authentication message to grant access [49]. For example,
using a secret key 𝑆, Alice may transmit a message to Bob using
cryptography checksum which is a function of the message and the
secret key. Bob can use the function and key to verify the authenticity
of Alice while an intruder who tried to modify the message of the
function will not be authenticated unless the secret key has been
compromised. While this is not the sole method used in the industry
for authentication, it is a typical representative example to demon-
strate that the traditional authentication approach is active, i.e., it
involves control message exchange and depends on secret keys. As
one can imagine this leads to increased overhead due to the active
nature of the authentication process. While secret keys are used for
authentication process, it is still a point of vulnerability that could be
compromised allowing illegitimate users gaining access to the network.
Since the RF fingerprinting is hardware-specific and often unintentional
characterization imparted at the analog component level, it is hard to
mimic. Therefore, it could be argued that RF fingerprinting could be
incorporated into more robust identification and authentication [49].

We explore the vulnerabilities of RF fingerprinting in Section 6.
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3.2. Localization, tracking, and navigation

As RF fingerprinting gains fidelity and robustness, it could be ex-
tended to or integrated with other applications such as assisting with
outdoor or indoor localization, navigation, and even tracking of specific
verified emitters. This could be highly beneficial for tactical applica-
tions, law enforcement, and first responders. For example, in search
and rescue applications victims or rescue operators could be uniquely
tracked based on the unique RF fingerprint emitted by their devices.
There are several other examples of applications where such tracking
can be highly beneficial. For example, there has been interest from the
National Institute of Justice in using RF fingerprinting for contraband
wireless devices tracking in correctional facilities [50]. Similarly, in
most cases, it is useful to track the warfighters during the mission to
monitor their progress, instantaneous location, and provide assistance
when required. First responders often encounter tough situations but
in most cases rely on wireless communication devices. Thus, if these
communication signals can be used to identify and track the first
responders, it can greatly enhance the efficiency and safety of these
operations.

It is important to point out that there is an added advantage that
no specific packets need to be emitted to help with the tracking since it
can be done implicitly by overhearing the communication signals. This
could decrease the overall overhead required for command and control
of such operations. This technology like many others is a double-
edged sword, one could imagine security vulnerabilities where modern
devices could be identified by illegitimate entities and then used to
track leading to privacy and security concerns. This implies there is
a whole new emerging area of research and analysis that may aim at
mitigating such security vulnerabilities.

3.3. Intrusion detection

We discussed some of the security vulnerabilities that could arise
from the misuse of RF fingerprinting but at the same time, it is a
powerful tool to detect intrusions and/or imitation attacks. With the
proliferation of wireless devices ranging from 5G mobile devices to low-
cost IoT devices, it is becoming difficult to secure the ever-expanding
threat surfaces. While there are millions of devices they all depend on
a few wireless protocols or standards such as 5G, WiFi, BLE, LoRa,
among others essentially implying that there will also be several de-
vices that transmit the same kind of signals. Therefore, it is becoming
imperative to have the ability to distinguish between legitimate and
illegitimate users on-the-fly even if they transmit the same signals. More
mportantly, intruders often mimic or perform replay attacks. Just like
raditional fingerprints enable some of the security systems to detect
ntruders, RF fingerprinting can serve the same purpose for commercial
nd tactical applications. For example, before a squadron is deployed
nto a mission, each of them could have RF fingerprint information of
heir fellow warfighters. In this way, each device will be able to alert
he presence of an intruder who is not part of the signature database.
here are many commercial buildings where unauthorized wireless
evices are prohibited, in such commercial secure environments, the
ecurity officers could deploy a similar methodology where every ap-
roved device is registered using their RF fingerprint. Once the system
s activated, the intruder detection system will be able to alert the
perator of unauthorized transmission even if they resort to replay or
mitation attacks.

.4. Application domains

Beyond 5G network or 6G envisions revolutionary application do-
ains [2,51–54]. However, with such immersive applications security

nd privacy of users as well as assets become paramount [55–59]. In
his section, we shed some light on the envisioned applications for RF
ingerprinting in the context of 6G as shown in Fig. 4.
5

(1) Intelligent Telehealth: Intelligent and real-time healthcare will
witness a paradigm shift with the 6G network. Real-time health
monitoring, hospital-to-hospital services,
Internet-of-Medical-Things (IoMT) also known as Healthcare
IoT will collectively present dynamic and responsive health
services [54,60]. Body area networks (BAN) with interconnected
IoMT will advance and personalize telehealth monitoring and
management. Remote health services with holographic telecon-
ferencing with the ultra low latency 6G communication holds
immense potential in democratizing healthcare services. Security
and privacy for such an interconnected healthcare system that
maintains the patient database and vital healthcare provider
information is the backbone in realizing the tactile 6G health-
care. Wireless device fingerprinting solutions that resides on
edge IoMT devices will be key to the real-time secure 6G IoT-
based healthcare. We foresee that such solutions in conjunction
with distributed ledger based multifactor authentication can
secure the integrity and privacy of the users from spoofing,
denial-of-service (DoS), identity theft attacks, among others.

(2) Autonomous UAV and V2X : Aerial base stations and swarms of
UAV can revolutionize and democratize wireless connectivity.
Especially, setting up infrastructureless networks can provide
emergency response, healthcare services, etc., by connecting
remote and austere locations. Such concepts have been explored
in the past [61] and will be a potential 6G use case [52,53,62].
Similarly, connected autonomous vehicles as in a V2X scenario
would involve the vehicles communicating with nearby net-
works along its route. In these applications, handover from one
network to another based on location and mobility is a necessity.
Accordingly a robust, fast, and lightweight device authentication
will be a key enabler to account for the diversity and mobility
of devices accessing the network. RF fingerprinting which inher-
ently involves no control overhead and merely uses hardware
signatures embedded in the unintentional emissions will be an
ideal candidate for such lightweight authentication schemes.

(3) Smart Grid 2.0 Smart grids are IoT-based electrical network
for remote monitoring and control of power systems. With the
advent of 6G, the smart grids will be able to support higher
density of IoT devices for ultra low latency and high reliability
communication enabling real-time anomaly detection and mit-
igation over distributed grid lines and stations. Confidentiality
of the information managed in these power grids pertaining
to user information, power metering, electrical usage patterns,
billing details, among others are indispensable and primary tar-
gets of cybersecurity attacks. Moreover, smart grid 2.0 envisions
intelligent pricing, automated grid management including en-
ergy trading among unknown parties in a point-to-point manner
which further exposes the threat surfaces [52]. Device finger-
printing based authentication and grid access for secure energy
trading will therefore gain popularity to realize smart grid 2.0.

(4) Extended Reality : Extended reality (XR) is a blanket term to
refer all real and virtual environments including virtual reality
(VR), augmented reality (AR), mixed reality, and everything
in between [63,64]. 6G will support advanced XR for various
use cases such as military tactical training, video conferencing,
online gaming, etc. In such applications along with meeting the
latency and rate requirements, user privacy will be an equally
necessary and challenging prerequisite. Consequently, user (de-
vice) authentication and access control will play a pivotal role
here.
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Fig. 4. Application domains for RF fingerprinting.
4. Traditional approaches for RF fingerprinting

4.1. Modulation domain based approach

4.1.1. PARADIS
The authors in [65] propose a radiometric signature-based device

identification called PARADIS (Passive RAdiometic Device Identifica-
tion System). This approach is based on the concept of radiometric
identity – taking advantage of minor variations of transmitter hardware
leading to peculiar features in the transmitted signal – to identify the
origin. The authors demonstrate the accuracy of PARADIS to be greater
than 99% for classifying more than 130 802.11 Network interface cards
(NICs). The system quantifies the transmitter’s radiometric identity by
comparing the signal with an ideal signal in the modulation domain on
a frame-by-frame basis.

Modulation domain metrics such as frequency error, SYNC corre-
lation, IQ offset, magnitude error, and phase error are used as the
features for determining the radiometric identity of the device. The
features resulting from hardware imperfections will be apparent over
multiple frames. Therefore, calculating the statistical averages of these
variations over multiple frames will magnify the artifacts caused by
the hardware while at the same time reducing the effects of noise
and channel. Following this, these five modulation domain metrics
are classified using a classifier to identify the source. Two radiometric
signature classifiers are implemented and evaluated, one using the
SVM algorithm and the other using the k-nearest neighbors (k-NN)
algorithm. The SVM classifier is built using LIBSVM [66], the model
takes a single radiometric signature as input and outputs the most
likely identity of the source with the measure of confidence. A k-NN
classifier is implemented using a group of rankers, where each NIC has
one ranker that calculates the similarity between a given signal and the
template of its signature computed during training.

The authors evaluated PARADIS on the ORBIT indoor wireless
testbed facility [67]. They collected data from 138 Atheros NICs con-
figured as 802.11b access points on channel 1. Agilent 89641S vector
signal analyzer was used as the PARADIS sensor to capture the frames
from the transmitters. Overall, PARADIS using the SVM algorithm had
an error rate of 0.0034%, and the system using the k-NN algorithm had
an error rate of 3% in classifying 138 identical NICs.
6

4.1.2. IQ imbalance
In [68], the authors proposed a method to extract RF fingerprint

features based on the IQ imbalance of the quadrature modulation
signals. The IQ imbalance is caused due to the hardware imperfections
in the IQ quadrature modulator. In the proposed method, the features
are extracted by performing autocorrelation on the received signals.
Real and imaginary parts of the autocorrelation form the RF fingerprint
feature, and the SNR is estimated using the traditional least squares
algorithm. To evaluate the method, the authors simulate five analog
modulators (emitters) by varying the gain and orthogonal IQ imbalance
and generate 400 signals from each emitter. The fingerprint feature
vector is extracted using the proposed method and an SVM classifier
is trained using half of the dataset. This method performs with an
accuracy greater than 90% for SNR ≥ 15 dB and greater than 99% for
SNR ≥ 20 dB.

4.1.3. Modulation shape and spectral features
The work in [69] proposes a method for identifying Radio Fre-

quency Identification Devices (RFID) by extracting the RF fingerprint
from modulation shape and spectral features of the signal emitted
by the transponder when subjected to an RFID reader. The proposed
method is able to identify 50 identical RFID transponders from the same
manufacturer with an error rate of 2.43%.

The authors use a purpose-built RFID reader to transmit to the
target transponder for capturing the signals. It consists of two signal
generators for envelope and modulation generation and a PCB antenna
to transmit to the RFID transponder. The response from the RFID
transponder is captured using an antenna and oscilloscope. Using this
setup, the authors collected data from 50 JCOP NXP 4.1 smart cards
and 8 electronic passports via the following four methods;

• Method 1: Capturing the response of the transponder when sub-
jected to ISO/IEC 14443 standard Type A and B protocols.

• Method 2 (Varied 𝐅𝐜): Capturing the response of the transponder
when subjected to out of specification (carrier frequency only)
ISO/IEC 14443 standard Type A and B protocols.

• Method 3 (Burst): Capturing the response of the transponder
when subjected to bursts of RF energy (10 cycles of
non-modulated 5 MHz carrier at 10 V peak-to-peak).
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• Method 4 (Frequency sweep): Capturing the response of the
transponder when subjected to linear sweep of a non-modulated
carrier from 100 Hz to 15 MHz (at 10 V peak-to-peak).

Modulation-shape features for data captured using methods 1 and 2
and spectral principal component analysis (PCA) for methods 3 and 4
are extracted. Modulation-shape features are extracted by performing
Hilbert transformation on the captured signals. The starting point of the
modulation in the transformed signal is located using a variance-based
threshold detection algorithm [70]. Standardized Euclidean distance is
obtained by matching the extracted fingerprint feature with the refer-
ence fingerprint [71]. Similarly, the Mahalanobis distance is evaluated
by matching the reference fingerprint features to the test features. The
spectral PCA features are extracted using a modified PCA for higher
dimension data [72].

To evaluate the classification capabilities of the proposed tech-
niques, the authors consider signals captured from 8 e-passports and
50 JCOP NXP 4.1 cards. Both classification techniques, one using
modulation features and the other using spectral features, perform with
an error rate of 0% when classifying signals into three classes (two
countries, JCOP NXP card). The authors evaluate the identification
capabilities of the method by using data collected through methods 3
and 4 consisting of data from 50 identical JCOP NXP 4.1 cards. The
proposed method performs with an accuracy of 95% in identifying 50
RFID cards when spectral features from data collected through methods
3 and 4 are used individually. Finally, when the spectral features from
data collected through methods 3 and 4 are combined, the accuracy
increases to 97.5%.

4.1.4. Weighted voting-based classification of modulation domain signals
In [73], the authors propose the use of a committee of weak

classifiers to provide a strong classification by using weighted vot-
ing to combine results of multiple weak classifiers. Physical charac-
teristics of the radio like frequency offset, modulation phase offset,
in-phase/quadrature-phase offset, and magnitude are extracted from
signals generated by six different radios in Wireless Open-Access Re-
search Platform (WARP). Differential Quadrature phase-shift keying
(DQPSK) modulation signals are generated and transmitted by the six
radio cards. A total of 14 ML classifiers are built using the following
signal characteristics:

• Frequency difference (1 classifier): The distance between the
actual transmission and ideal carrier frequency.

• Magnitude difference (4 classifiers): The distance between the
magnitude of transmitted and ideal carrier symbols.

• Phase difference (4 classifiers): The angular distance between the
transmitted and the ideal symbol in the IQ domain.

• Distance vector (4 classifiers): Vector distance between the trans-
mitted and the ideal symbol.

• IQ origin offset (1 classifier): Distance between the origin of the
ideal IQ plane and the origin of the transmitted symbol in the IQ
domain.

The 14 classifiers are trained with the first 200 frames of 1844 random
QPSK symbols from each board, then the outputs of the classifiers are
combined using weighted voting to get the final radio identity. The
weighted voting-based classifier has an average accuracy of 88% in
detecting six radio cards.

4.1.5. Constellation error features
The authors in [74] propose an RF fingerprinting approach based on

constellation error features. Transmitter imperfection that is reflected
in error between the received constellation and the ideal constellation
is used as the feature for RF fingerprinting. These features are extracted
using subclass discriminant analysis (SDA). Burst QPSK modulated
signals from seven TDMA satellite terminals are captured to construct
7

the dataset for testing. The received signal is synchronized for time
and frequency before building the modulation constellation, following
which the constellation errors are computed. Feature vectors containing
41 features are extracted and classified for each of the signals using SDA
feature extraction. The proposed method performs with an accuracy
greater than 95% for the bin size of the SDA feature extraction method
greater than 12.

As we conclude this section, we summarize the reviewed literature
in Table 1 for easy comparison for the reader.

4.2. Statistical approach

4.2.1. Non-parametric feature
In [75], the generation and use of non-parametric features like

mean, median, mode, and linear model coefficients (slope and intercept
are estimated by linear regression) for identifying ZigBee devices is pro-
posed. Complex IQ signals from four Texas Instruments ZigBee CC2420
devices are captured using Agilent E3238S receiver. The phase variable
of the received signal is generated and the preamble region of the
phase variables is divided into 32 equal sized Regions of Interest (ROIs).
Following this, the non-parametric features are generated for each ROI.
The signals are classified using a random forest classifier with 1000
trees. Each of the four non-parametric features is used individually to
classify the device. The results show that the classification accuracy for
each of the non-parametric features is above 97% for SNR ≥ 10 dB. At
lower SNR, linear model coefficient features perform better than the
other non-parametric features. The author also compares the perfor-
mance of using the non-parametric features over parametric features by
computing the parametric features (variance, skewness, and kurtosis)
for each ROI. The same random forest classifier is used to classify the
features individually. The non-parametric features show improvements
by upto 9% at SNR = 8 dB over the parametric features.

4.2.2. RF-DNA based features
In [76], the authors propose a RF distinct native attribute (RF-

DNA) based RF fingerprinting for identifying ultra-wideband (UWB)
noise radar emitting devices. RF-DNA fingerprint features, including
variance, skewness, and kurtosis, are extracted for the time-domain
response of the signals. Additionally, the authors also extract nor-
malized power spectral density (PSD) and discrete Gabor transform
from the spectral-domain response of the signals. The signals are
classified using multiple discriminant analysis with maximum likeli-
hood (MDA/ML) classifier and generalized relevance learning vector
quantization-improved (GRLVQI) classifiers. MDA/ML classifier is a
combination of multiple discriminant analysis (MDA) that aims to
reduce the dimensionality of a multi-dimensional dataset and maxi-
mum likelihood (ML) classifier. The GRLVQI classifier is a supervised
machine learning method that enlarges generalized learning vector
quantization (GLVQ) by adding weighting factors to the input dimen-
sions [77]. These factors allow for appropriate scaling of the input
dimensions according to their relevance and are adapted automatically
during training according to the specific classification task.

The classification performance is evaluated on signals captured by
transmitting UWB noise radar waveforms using a log-periodic antenna
placed one meter from the receiver in an anechoic chamber. By varying
the termination load of the transmitting antenna, three classes of wave-
forms are captured. Additionally, an attenuator is used to increase the
number of classes. For the three-class case using only time-domain fin-
gerprint features, the proposed method has a classification accuracy of
99.7% and 98.25% for MDA/ML and GRLVQI classifiers, respectively.
In the case of the seven-class dataset using only time-domain fingerprint
features, the proposed method has an average classification accuracy
of 81% and 75% for MDA/ML and GRLVQI classifiers, respectively.
Similarly, for the three-class dataset using only spectrum-domain fin-
gerprint features, the proposed method has a classification accuracy of
91.97% and 94.47% for MDA/ML and GRLVQI classifiers, respectively.
Lastly, using a combination of time and frequency domain features, the
classification accuracy for the three-class data is 97.65% and 93, 79% for

MDA/ML and GRLVQI classifiers, respectively.
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Table 1
Modulation-domain based RF fingerprinting works.
Work Radiometric

parameter
Classification
technique

RF emitters Performance

Brik et al. [65] Frequency error,
SYNC correlation,
IQ offset,
magnitude error,
and phase error

k-NN & SVM 138 802.11 NICs SVM→ 99.9%
k-NN→ 97%

Zhuo et al. [68] IQ Imbalance SVM MATLAB
simulated 5
analog modulators

≥ 90% for SNR
≥ 15 dB

Danev et al. [69] Modulation-shape
and spectral PCA
features

Mahalanobis
distance

8 e-passports and
5 JCOP NXP 4.1
cards

100% classification
accuracy and 97.5%
identification
accuracy.

Candore et al. [73] Frequency offset,
modulation phase
offset, in-
phase/quadrature-
phase offset, and
magnitude

Weighted
voting-based
classifier

Six WARP radio
cards

88% identification
accuracy and 12.8%
false alarm rate

Huang et al. [74] Constellation-error SDA feature
extraction

Seven TDMA
satellite terminals

95% identification
accuracy
4.3. Transient-based approach

Transient-based approach involves identifying distinctive features
present in the radio turn-on transients, which appear at the start of
the transmission. The transient is the section of the signal where the
amplitude rises from channel noise to signal amplitude. Identification
of devices using this process consists of three steps: detection of tran-
sients, extraction of features, and classification. A brief overview of the
two key approaches of transient detection: Threshold [78] and Bayesian
step-change detector [79] is discussed in [80]. Both of which exploit
the amplitude characteristics of the signal for transient detection. They
also propose a new approach for transient detection using the phase
characteristic of the signal to improve performance when the transient
gradient is gradual.

4.3.1. Fast Fourier Transform (FFT)-based Fisher features
The authors of [81] propose the use of FFT-based Fisher features

to identify wireless nodes. In this approach, the RF fingerprint (fea-
ture template) of the signals is computed by first detecting the start
point and extracting the transient of the signals using a variance-based
threshold detection algorithm [70]. The relative difference between the
adjacent FFT spectra is determined by applying a 1-D Fourier Transform
on the transients. Following which the Fisher feature vector that forms
the feature template is extracted using a Linear Discriminant Analysis
(LDA) matrix. The LDA matrix is derived by a standard procedure
based on scatter matrices [82]. Lastly, the fingerprint is matched by
calculating the Mahalanobis distance between the reference and test
signals feature template.

Over 600 IEEE 802.15.4 signal samples from 50 consumer-off-the-
shelf (COTS) Tmote sky sensor nodes with the same manufacturer
signature are collected to evaluate the proposed technique. The system
identifies the 50 sensors with an accuracy higher than 99.5%. This work
also investigates the effects of parameters such as distance, antenna
polarization, and voltage on the performance of the system.

The results of these investigations suggest the system is robust
against distance, multipath propagation, and voltage changes. But a
change in the polarization of the signal alters the shape of the transient
perturbing the frequency information present in the transient conse-
quently leading to a drop in recognition accuracy. They also investigate
the practicality of the system on attacks such as hill-climbing and
DoS. Hill-climbing attack is a common impersonation attack where the
attacker repeatedly submits data to the algorithm with slight modifi-
cation. Modifications that improve or preserve the matching score are
8

preserved. Over time, the attacker can achieve a score higher than
the designed threshold resulting in a successful impersonation. The
system can be vulnerable to an impersonation attack when the number
of signals used to build the fingerprint feature template is low. This
work investigates the vulnerability of the system to jamming-based
DoS attacks. Due to the superposition of the original and the jamming
signals, the system is unable to recognize the device. The authors
suggest that this type of attack can be used as a security measure against
an attacker.

4.3.2. Hilbert–Huang transform-based time–frequency–energy distribution
features

The authors propose a specific emitter identification (SEI) method
based on the transient signal’s time–frequency–energy distribution
(TFED) obtained by Hilbert–Huang transform (HHT) [83]. HHT is
a self-adaptive signal analysis method it involves Empirical Mode
Decomposition (EMD) and Hilbert transform [84]. The EMD method
decomposes a given signal into a set of a finite number of intrinsic
mode functions (IMFs). Applying Hilbert transform on the IMFs yields
the TFED. The start of the signal is detected using a phase-based
method [80] and the endpoint is detected by forming the energy
trajectory of the signal from TFED. Following thirteen features are
extracted from the TFED:

• Three features from overall features: Sum of energy, duration of
transient signal, and duration of the maximum energy point.

• Four energy distribution features along the frequency-axis: en-
tropy, kurtosis, skewness, and center.

• Four energy distribution features along the time-axis: entropy,
kurtosis, skewness, and center.

• Two energy distribution features of the overall time–frequency
plane: entropy and center.

The authors use PCA to reduce the dimension of the feature vector and
use an SVM to classify the devices. The authors collect transient signals
from eight GSM mobile phones (four Nokia 5230, two Motorola Me525,
and two Xiaomi-1) using a Leroy 8500 A digital oscilloscope connected
to a digital receiver with a Yagi antenna. The SVM classifier is trained
with 50 transient signals from each device, and the system is tested with
100 transient signals from each device. The proposed method attains an
accuracy of 100% in classifying the eight mobile devices.
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Table 2
Transient based RF fingerprinting works.
Cited literature Transient detection

method
Classification
technique

RF emitters performance

Danev et al. [81] Variance-based
threshold

Mahalanobis
distance

50 COTS Tmote
Sky sensor (IEEE
802.15.4)

≥ 99.5%

Yuan et al. [83] Phase-based
method

SVM 8 GSM Mobile
phones

100%

Rehman et al. [85] Variance-based
threshold

k-NN 7 built-in
Bluetooth
transceivers

99.9%
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4.3.3. Energy envelope features
In [85], features extracted from the energy envelope of the transient

signal are used as RF fingerprints to identify Bluetooth devices. The
transients are extracted from the normalized signals using variance-
based threshold method [70]. The energy envelope is then extracted
using the spectrogram which is defined as the squared magnitude of
Short-Time Fourier Transform (STFT). The spectrogram computes a
three-dimensional TFED that is then sliced with respect to the in-
stantaneous frequency at the maximum energy value to obtain the
smoothed energy envelope curve. Finally, the RF fingerprint is formed
by extracting the following features from the energy envelope curve:

• Area under the normalized curve.
• Duration of transient.
• Maximum slope of the curve.
• Kurtosis of the curve.
• Skewness of the curve.
• Variance of the transient envelope.

Bluetooth device discovery mode signals from seven built-in Blue-
ooth transceivers of cell phones are captured using an oscilloscope
nd an Agilent spectrum analyzer. A total of 300 signals from each of
he seven Bluetooth transceivers are captured and the RF fingerprint
eatures are extracted. A k-NN classifier with 3 nearest neighbors is
sed to classify the feature vector. Fifty signals from each of the seven
evices are used to train the classifier, and the remaining 250 signals
re used for testing. The proposed method classifies the devices with
n accuracy of 99.9%. Further, the authors investigated the effect of
ampling rate on classification accuracy. Because the energy envelope
f the transient does not change with the sampling rate, the accuracy
f identifying devices remains 99.9% for a sampling rate of 4 GSps, 1
Sps, 512 MSps, 256 MSps, 128 MSps, and 32 MSps.

The above discussed transient-based RF fingerprinting literature are
lso summarized in Table 2.

.4. Wavelet-based approach

.4.1. Dual-tree complex wavelet transform (DT-CWT)
A wavelet domain (WD) approach based on DT-CWT features ex-

racted from the non-transient preamble response of 802.11a signals is
roposed by the authors of [86]. The effectiveness of WD fingerprinting
s demonstrated using Fisher-based MDA/ML classification. Also, this
ork considers the effect of varying channel SNR, burst detection
rror, and dissimilar SNRs for MDA/ML training and classification. WD
ingerprinting with DT-CWT features achieves classification accuracy
f 80% for signals with SNR up to 8 dB and performs superior to
ime-domain RF fingerprinting.

DT-CWT is an extension of discrete wavelet transform (DWT) which
ecomposes a time-domain signal into wavelets that are localized in
requency and time domain. DT-CWT addresses the necessity of shift-
nvariance that is not present in DWT. DT-CWT is implemented using
wo real-valued filter banks represented as tree1 and tree2 in Fig. 5 [87].
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t

The wavelet and scaling functions for tree1 filter banks – 𝜓(𝑡) and 𝜙(𝑡)
– are given by,

𝜓(𝑡) =
√

2
∑

𝑛
ℎ1(𝑛)𝜙(2𝑡 − 𝑛), (1)

(𝑡) =
√

2
∑

𝑛
ℎ0(𝑛)𝜙(2𝑡 − 𝑛) (2)

nd the corresponding functions for tree2 filter banks are Hilbert trans-
orms of Eqs. (1) and (2) given by,
′(𝑡) =

√

2
∑

𝑛
ℎ′1(𝑛)𝜙

′(2𝑡 − 𝑛), (3)

𝜙′(𝑡) =
√

2
∑

𝑛
ℎ′0(𝑛)𝜙

′(2𝑡 − 𝑛). (4)

he filter coefficients ℎ1(𝑛), ℎ0(𝑛), ℎ′1(𝑛), and ℎ′0(𝑛) are implemented
irectly as analysis filters. For a real-valued input, the DT-CWT filter
ank outputs a real-valued WD component 𝐼 𝑙𝑊 𝐷 and an imaginary
omponent 𝑄𝑙𝑊 𝐷. From this, a complex WD signal can be expressed
s,
𝑙
𝑊 𝐷(𝑛) = 𝐼 𝑙𝑊 𝐷(𝑛) + 𝑗𝑄

𝑙
𝑊 𝐷(𝑛). (5)

o mitigate the excessive need for computation time and data process-
ng when using fundamental signal characteristics such as amplitude
(𝑛), phase 𝜙(𝑛), and frequency𝑓 (𝑛), as the classification features. The
uthors propose to use the statistical properties of the fundamental sig-
als for the classification of devices. These statistics include variance,
kewness, and kurtosis.

The authors collect the IQ samples from laptops with 802.11a
isco personal computer memory card international association cards
sing an Agilent-based RF signal intercept and collection system in
n anechoic chamber. To simulate the various SNR conditions, an
‘analysis signal’’ is generated by adding a random complex additive
hite Gaussian Noise (AWGN) signal to the collected complex signal.
efore adding, the noise signal is filtered and power-scaled to achieve
esired SNR for the analysis signal. Next, the starting location (sample
umber) of the RF burst is visually determined and is used to locate the
reamble region. The analysis signals are divided into three subregions
or fingerprint generation. A five-level DT-CWT is performed for each
f these subregions, and the complex WD signal for each of the levels is
omputed for all the subregions using (5), followed by the calculation
f signal characteristics and statistical classification features resulting
n a total of 135 features per analysis signal, which is then used for
isher-based MDA/ML classification with Monte Carlo simulation and
-fold validation.

To compare the proposed WD fingerprints with time-domain (TD)
ingerprints, the authors generated WD and TD fingerprints for each
nalysis signal. The TD fingerprints are generated similarly to WD
ingerprints but without performing DT-CWT, which consists of three
ignal characteristic features and three statistical features for each of
he three subregions. For each analysis signal, TD fingerprints are
omposed of 27 features, and WD fingerprints are composed of 135
eatures. Both techniques performed identically for SNR ≥ 25 dB and

he WD technique was superior for −2 < SNR < 24 dB. WD fingerprints
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Fig. 5. Five level dual-tree complex wavelet transform.
achieves an accuracy of 80% at SNR ≈ 11 dB. This performance
increase when using WD fingerprinting is a gain of approximately
7 dB with respect to equivalent TD fingerprinting. To evaluate whether
the classifier takes advantage of the larger number of features in WD
fingerprints, the authors decided to choose a subset of 27 selected
WD features from the 135 features. Classification with 27-feature WD
fingerprinting shows that the WD technique outperforms the 27-feature
TD fingerprinting only for 0 < SNR < 20 dB with a performance
gain of approximately 2 dB relative to 27-feature TD fingerprinting.
This increase in performance, given equal dimensionality, suggests that
the classifier exploits the additional information present in DT-CWT
features.

4.4.2. Dynamic wavelet
A dynamic wavelet fingerprint method to identify unique RFID tags

using supervised pattern classification techniques is presented in [88].
In this study, 146 individual RFID tags of three types: Avery-Dennison
AD 612, Avery-Dennison Runway Gen 2, and Alien Omni-Squiggle, are
used. RF signals from each of the tags are captured by writing the same
code onto the tag using Thing Magic Mercury 5e RFID Reader and
reading the response with an omnidirectional antenna through a vector
signal analyzer. From the captured complex-valued signals, amplitude,
phase, and instantaneous frequency are computed and used for extract-
ing RF fingerprint feature vector. In this work, the authors propose
using a feature vector that is a combination of features extracted from
dynamic wavelet fingerprint (DWFP), wavelet packet decomposition
(WPD), and higher-order statistics.

The authors use the DWFP technique [89] that applies wavelet
transform on the original TD signal and generates a ‘‘fingerprint-like’’
binary image. Image processing routines are performed on the binary
image to extract signal’s RF fingerprint. Feature selection is performed
on the features extracted by the image processing steps using Euclidean
distance metric to indicate the most highly separable interclass dis-
tance. Next, fingerprint features are extracted by performing WPD [90],
which is done by applying a wavelet packet transform (WPT) on the RF
signal to generate a tree of coefficients. Wavelet packet energy is calcu-
lated for the terminal nodes of the WPT tree and the highest energy is
selected as the feature. Finally, higher-order statistics are performed
on the unfiltered waveform to extract the following features: mean
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of EPC, maximum cross-correlation with another EPC from the same
tag, variance, Shannon entropy, second central moment, skewness,
and kurtosis. A combination of the features extracted with the three
methods is used as the feature vector for the classifier. The proposed
feature vector is tested with four types of classifiers for identifying RFID
tags: Linear and Quadratic discriminant classifiers (LDC and QDC), k-
NN, and SVM. All of the four classifiers perform with an accuracy of
99% in identifying the RFID tags.

4.4.3. Wavelet domain-based Bayes approach
In [91], the authors propose a WD-based Bayes approach to detect

the presence of micro-UAVs and signal energy transient to identify
the type of micro-UAV. The proposed detection method first converts
the RF signals from the UAV controllers into WD using three-stage
wavelet decomposition followed by differentiating noise (non-UAV sig-
nals) and micro-UAV signals using a naive Bayes approach based on the
Markov model. The transformation of RF signals to the WD removes
the bias and reduces the size of the data. If micro-UAV is detected
using the proposed method, the classification of the signal is carried
out. For the proposed classification method, the TD RF signal is first
transformed into the energy–time–frequency domain and is represented
as a spectrogram. The spectrogram is the squared magnitude of the
discrete STFT of the signal. Energy transient is estimated by detecting
the abrupt change in the energy trajectory from the spectrogram. The
energy transient is then used to extract the statistical RF fingerprints
(feature set) such as skewness, variance, energy spectral entropy, and
kurtosis. The dimensionality of the feature set is reduced using Neigh-
borhood Component Analysis (NCA). NCA is a supervised learning
method for feature selection, transforming the primary data into a
lower-dimensional space [92]. The reduced feature sets are used to
train four machine learning algorithms: k-NN, discriminant analysis
(DA), SVM, and neural networks (NN).

RF signals from 14 micro-UAV controllers operating at 2.4 GHz are
captured indoors using Keysight MSOS604 A oscilloscope. An omnidi-
rectional antenna is used to capture the RF signal at a close distance
and a grid antenna is used for far-field signal capture. A total of 100 RF
signals is captured from each micro-UAV controller to form the dataset,
which is split randomly with a ratio of 4:1 for training and testing. The
authors show that the proposed detection method has an accuracy of
84% in detecting the presence of micro-UAV for a given SNR of 10 dB

and 100% accuracy for SNR ≥ 12 dB. Once the UAV is detected, the
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Table 3
Wavelet-based RF fingerprinting methods.
Work Wavelet method Classification

technique
RF emitters Performance

Kelin et al [86] Dual-tree complex
wavelet transform
(DT-CWT)

Fisher-based
MDA/ML

802.11a Cisco
PCMCIA cards

80% at 11 db SNR
and ≥ 98% at SNR
≥ 25 dB

Bertoncini et al. [88] Dynamic wavelet
fingerprint (DWFP)
[89], wavelet
packet decomposition
(WPD) [90]

LDC, QDC, k-NN
and SVM

50 Avery-Dennison
AD 612, 50
Avery-Dennison
Runway Gen 2,
and 50 Alien
Omni-Squiggle

99%

Ezuma et al. [91] Three-stage wavelet
decomposition

k-NN, discriminant
analysis (DA),
SVM, and neural
networks (NN)

14 micro-UAV
controllers

k-NN→ 96.3%,
SVM→ 96.84%,
DA→ 88.15%,
and NN→ 58.49%
RF signal is classified to identify the UAV. The classification accuracy
of k-NN, SVM, DA, and NN classification methods are 96.3%, 96.84%,
88.15%, and 58.49%, respectively. Accuracy of classification increases
with an increase in SNR. The authors clearly state that the hyperparam-
eters of the NN algorithm were not optimized in this work, leading to
the poor performance of the NN algorithm. If the hyperparameters of
the NN algorithm are optimized and tuned correctly, the NN algorithm
could have a high classification accuracy.

These discussed wavelet-based approaches are tabulated in Table 3.

4.5. Other approaches

4.5.1. Steady state frequency domain approach
The authors of [93] present a technique for radio transmitter iden-

tification based on frequency domain characteristics. This approach
employs frequency domain analysis with a traditional discriminatory
classifier – k-NN – for RF fingerprinting and device identification. This
work demonstrates an accuracy of 97% at 30 dB SNR and 66% accuracy
at 0 dB SNR in identifying eight identical USRP transmitters.

For demonstration, the authors consider the Random Access Chan-
nel (RACH) preamble in UMTS. The IQ samples of the preamble are
captured and down-converted from transmit band to baseband. The
baseband signal is bandpass sampled by the analog-to-digital converter
(ADC) at the Nyquist rate and downsampled using a sum of absolute
values window function followed by carrier frequency offset correction
and amplitude normalization. Spectral analysis of the entire preamble
signal is performed using the FFT and is fed as the input for the k-NN
classifier. The dataset is divided into training and testing sets. In the
training step, the k-NN algorithm maps the training preamble signals
set into a multidimensional feature space, divided into regions based
on the class. During testing, the preamble is determined to belong to
the class with the most frequent label among the k-nearest preambles
from training.

To evaluate the method UMTS RACH preamble are generated using
MATLAB and transmitted using USRPs with identical specifications. An
Anritsu Signature MS2781 A spectrum analyzer is used to capture the
IQ samples from eight USRPs individually and 300 preamble samples
are captured from each of the eight USRPs. For training the k-NN algo-
rithm, 150 preamble samples from each USRP is used and the remaining
is used for testing the system. The system achieves a classification
accuracy of 97% for preamble signals above 25 dB SNR and accuracy
of 66% for 0 dB SNR. The authors also test the effect of binning on
classification accuracy by varying the number of bins used to determine
the spectral energy features. At lower SNR, binning reduces the overall
classification performance and the accuracy reaches its maximum at
around 200 bins for SNR 15 dB–30 dB.
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4.5.2. Permutation entropy
In [94], the authors propose a multidimensional permutation

entropy-based RF fingerprinting method. Permutation entropy is the
measure of complexity for a given time series. Accordingly, it can
extract and amplify the minuscule changes in the given time signal.
The proposed method involves first capturing the radio signals and
extracting the envelopes of the signal, then calculating the multidi-
mensional permutation entropy of the signal envelope to form the
RF fingerprint feature vector. An SVM classifier with an radial basis
function (RBF) kernel is used to classify the feature vector. To evaluate
the method, the authors collect 100 sets of data from three AKDS700
radios using a digital receiver and an oscilloscope. Multidimensional
permutation entropy is computed for all the signals captured using a
multidimensional vector. The SVM trained for these features performs
with an average accuracy of 90% for SNR ≥ 10 dB in recognizing the
three radios.

4.5.3. Received signal strength
A Multi-Fingerprint and Multi-Classifier Fusion (MFMCF) localiza-

tion method for RF fingerprinting is proposed in [95]. The proposed
technique aims to increase the localization accuracy of WiFi Access
Points (APs) by constructing composite fingerprints and combining
multiple classifiers. The authors construct a composite fingerprint set
(CFS) consisting of received signal strength (RSS), signal strength dif-
ference (SSD), and hyperbolic location fingerprint (HLF) features. In
this method, a decision structure with three classifiers k-NN, SVM, and
random forest is used to obtain a more accurate location estimate.

The authors collect RSS data of seven APs at 35 points in an indoor
location, each at least 1.2 m apart. A total of 100 RSS data is recorded
for each of the APs at each location. Grubbs method [97] based on
the mean and standard deviation is used to detect outliers in RSS data.
The outliers are replaced with a Gaussian random number generated
using the mean and variance of the non-abnormal data. SSD and HLF
fingerprints are constructed based on the collected RSS. SSD is the
difference in RSS values observed by two APs, and HLF is the ratio
of RSS between pairs of APs. The three fingerprints, RSS, SSD, and
HLF are combined to form the CFS. Linear discriminant analysis is
used to reduce the dimensions of CFS. Using the reduced CFS, the
three classifiers (K-NN, SVM, and random forest) are trained. In the
testing stage, the entropy of each of the classifiers is calculated and the
classifier with the least entropy is used to estimate the location.

To evaluate the proposed MFMCF technique, the authors use LDA to
select 12 features from 49 features in CFS, which covers more than 95%
of the information. The probability of zero positioning error of MFMCF
is 96.5%, which is an increase of 4.2%, 6.4%, and 7.7% compared with
RSS, SDD, and HLS, respectively, when used as independent finger-
print features for classification. To compare MFMCF with independent
classifiers, CFS was used to train and test individual classifiers. The

probability of zero positioning errors of MFMCF, RF, k-NN, and SVM
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Table 4
Other traditional RF fingerprinting works.
Work Radiometric

parameter
Classification
technique

RF emitters Performance

Kennedy et al. [93] FFT k-NN 8 USRPs 97% identification
accuracy at SNR >
25 dB and 66% at
0 dB SNR

Deng et al. [94] Multidimensional
permutation
entropy

SVM 3 AKDS700 radios 90% identification
accuracy at
SNR ≥ 10 dB

Yuan at al. [95] RSS, SSD, and
HLF features

MFMCF 7 APs Probability of zero
positioning error is
96.5%.

Baldini et al. [96] Permutation
entropy and
Dispersion entropy

k-NN, SVM, and
decision tree

9 nRF24LU1+ k-NN up to 82.3%,
SVM up to 82.1%,
and Decision tree
up to 81.4%.
were 96.5%, 90.2%, 92.9%, and 94.8%, respectively. The authors also
show that the proposed MFMCF technique has the lowest average
localization error of 0.14 m.

4.5.4. Permutation entropy and dispersion entropy
The authors in [96] propose an RF fingerprinting method for iden-

tifying IoT devices using entropy-based statistical features called Per-
mutation Entropy (PE) and Dispersion Entropy (DE). In this work, nine
nRF24LU1+ IoT devices are used for evaluating the proposed method.
The RF signals from these devices are captured using an N210 USRP
with XCVR2450 frontend. All nine devices are configured to transmit
fixed payloads based on MySensors specifications. MySensors [98] is
a free and open-source software framework for DIY (do-it-yourself)
wireless IoT devices that allows devices to communicate using radio
transmitters. The real-valued IQ samples are captured using the USRP
followed by synchronization and normalization to obtain the burst of
traffic associated with the payload.

The following statistical features are then computed for each re-
ceived payload: variance, skewness, kurtosis, Shannon entropy, log
entropy, PE (order=4, and delay=1), PE (order=5, and delay=1), DE
(embedding dimension=3, classes=5, and delay=1), DE (embedding
dimension=4, classes=5, and delay=1), and DE (embedding dimen-
sion=5, classes=5, and delay=1). The authors train three classifiers:
k-NN, SVM, and decision tree with a subset of the ten features listed
above. The authors show that the classifier trained using PE and DE
features along with statistical features has an accuracy of 24% to 30%
higher than the classifier trained with just statistical features (Shannon
entropy and log entropy). Using just the PE feature along with statistical
features leads to a good improvement in accuracy in contrast to using
Shannon entropy and log entropy. Finally, the authors show that all
three classifiers performed with similar classification accuracy when
trained with PE and DE features along with statistical features.

The works discussed in this section are also condensed in a tabular
form in Table 4.

5. Deep learning for RF fingerprinting

Deep learning based techniques have been slowly invading this field
of research and becoming the state of the art. This is primarily due
recent revival of machine learning fueled from rapid growth of compu-
tational capabilities and the availability of digital data. Keeping that in
mind and for the benefit of reader who might be relatively new to deep
learning, we provide a brief tutorial regarding the core techniques used
for RF fingerprinting. For a more comprehensive review we recommend
12

the readers to [99].
Fig. 6. Three-layered FNN.

5.1. Overview on supervised deep learning

5.1.1. Feedforward neural networks
Feedforward neural networks (FNN) also referred to as multilayer

perceptrons are directed layered neural networks with no internal
feedback connections. In the mathematical sense, an FNN maps input
vector 𝐱 to output 𝑦, i.e., 𝑓 ∶ 𝐱 ⟶ 𝑦. An N-layered FNN is a
composite function 𝑦 = 𝑓 (𝐱;𝛤 ) = 𝑓𝑁 (𝑓𝑁−1(⋯ 𝑓1(𝐱))) mapping input
vector 𝐱 ∈ R𝑚 to a scalar output 𝑦 ∈ R. Here, 𝛤 represents the neural
network parameters such as the weights and biases. Depth and width
of the neural network are related to the number of layers in the neural
network and number of neurons in the layers respectively. The layers
in between the input and output layers for which the output does not
show are collectively referred to as the hidden layers. A 3-layered FNN
accepting a two-dimensional input vector 𝐱 ∈ R2 approximating it to a
scalar output 𝑦 ∈ R is illustrated in Fig. 6.

Here, each node represents a neuron and each link between the
nodes 𝑖 and 𝑗 are assigned a weight 𝑤𝑖𝑗 . The composite function of the
3-layered FNN is

𝑦 = 𝑓 (𝐱;𝛤 ) = 𝑓3(𝑓2(𝑓1(𝐱))) (6)

In other words, the 3-layer FNN in Fig. 6 is the directed acyclic graph
equivalent of the composite function in (6). The subscript 𝑛 of 𝑓𝑛
indicates the layer number. The mapping in the first layer is

𝐋1 = 𝑓1(𝐱) = 𝛾1(𝐖1𝐱 + 𝐛1) (7)

where 𝛾1(◦) is the activation function, 𝐛1 is the bias vector, and 𝐖1
represents the weight matrix between the neurons in the first and
second layers. Here, the weight matrix 𝐖1 is defined as the link weights
between the neurons in the input and second layer

𝐖1 =
[

𝑤𝑎𝑏 𝑤𝑑𝑏
𝑤𝑎𝑒 𝑤𝑑𝑒

]

. (8)

Similarly, the second layer mapping can be represented as

𝐋 = 𝑓 (𝐋 ) = 𝛾 (𝐖 𝐋 + 𝐛 ) (9)
2 2 1 2 2 1 2
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Fig. 7. Convolution of input slice with kernel.
Finally, the output is

𝑦 = 𝑓3(𝐋2) = 𝛾3(𝐖3𝐋2 + 𝐛3) (10)

The weight matrices in the second and final layers are

𝐖2 =
[

𝑤𝑏𝑐 𝑤𝑒𝑐
𝑤𝑏𝑓 𝑤𝑒𝑓

]

and 𝐖3 =
[

𝑤𝑐𝑜 𝑤𝑓𝑜
]

.

The neural network parameters 𝛤 = {𝐖1,𝐖2,𝐖3,𝐛1,𝐛2,𝐛3} comprise
the weight matrices and bias vectors across the layers. The objective
of the training algorithm is to learn the optimal 𝛤 ∗ to get the target
composite function 𝑓 ∗ from the available samples of 𝐱.

5.1.2. Convolutional neural networks
Convolutional networks or convolutional neural networks (CNNs)

are a specialized type of feedforward neural network known for its
spatial mapping capability. A CNN performs convolution operation in at
least one of its layers. The feature extraction capability of CNNs mimics
the neural activity of the animal visual cortex [100]. The convolution
operation in CNNs emulates the scene perception characteristic of
the brain’s visual cortex whereby they are sensitive to sub-regions
of the perceived scene. Accordingly, CNNs have been widely used
for computer vision problems [39,101–108]. The convolution is an
efficient method of feature extraction that reduces the data dimension
and consequently reduces the parameters of the network. Therefore, in
contrast to its fully connected feedforward counterpart, CNNs are more
efficient and easier to train.

CNN architecture would often involve convolution, pooling, and
output layers. The convolution layer convolve the input tensor 𝐗 ∈
R𝑊 ×𝐻×𝐷 of width 𝑊 , height 𝐻 , and depth 𝐷 with the kernel (filter)
𝐅 ∈ R𝑤×ℎ×𝐷 of width 𝑤, height ℎ, and of the same depth as the
input tensor to generate an output feature map 𝐌 ∈ R𝑊1×𝐻1×𝐷1 . The
dimension of the feature map is a function of the input as well as kernel
dimensions, the number of kernels 𝑁 , stride 𝑆, and the amount of zero
padding 𝑃 . Likewise, the feature map dimensions can be derived as
𝑊1 = (𝑊 −𝑤 + 2𝑃 ) ∕𝑆 + 1, 𝐻1 = (𝐻 − ℎ + 2𝑃 ) ∕𝑆 + 1, 𝐷1 = 𝑁 .
In other words, there will be as many feature maps as the number
of kernels. Kernel refers to the set of weights and biases. The kernel
operates on the input slice in a sliding window manner based on the
stride — the number of steps with which to slide the kernel along with
the input slice. Hence, each depth slice of the input is treated with the
same kernel or in other words, shares the same weights and biases
— parameter sharing. A feature map illustration from a convolution
operation on an input slice 𝐱 by a kernel 𝐟 is demonstrated in Fig. 7.
Here, 𝑏 represents the bias associated with the kernel slice and 𝛾 (◦)
denotes a non-linear activation function.

The resulting output from the convolution operation is referred to
as the feature map. Each element of the feature map can be visualized
as the output of a neuron which focuses on a small region of the input
— receptive field. The neural depiction of the convolution interaction is
shown in Fig. 8.

It is evident that each neuron in a layer is connected locally to
the neurons in the adjacent layer — sparse connectivity. Hence, each
neuron is unaffected by variations outside of its receptive field while
producing the strongest response for spatially local input pattern. The
feature maps are propagated to subsequent layers until it reaches the
output layer for a regression or classification task. Pooling is a typical
operation in CNN to significantly reduce the dimensionality. It operates
13
Fig. 8. Neural representation of convolution.

Fig. 9. Max and mean pooling on input slice with stride 1.

on a subregion of the input to map it to a single summary statistic
depending on the type of pooling operation — max, mean, 𝐿2-norm,
weighted average, etc. In this way, pooling downsamples its input. A
typical pooling dimension is 2 × 2. Larger pooling dimensions might
risk losing significant information. Fig. 9 shows max and mean pooling
operations.

A pooling layer of dimensions 𝑊𝑝 × 𝐻𝑝 upon operating over an
input volume of size 𝑊1 × 𝐻1 × 𝐷1 with a stride of 𝑆1 will yield an
output of volume 𝑊2 =

(

𝑊1 −𝑊𝑝
)

∕𝑆1, 𝐻2 =
(

𝐻1 −𝐻𝑝
)

∕𝑆1, 𝐷2 = 𝐷1.
Pooling imparts invariance to translation, i.e., if the input to the pooling
layer is shifted by a small amount, the pooled output will largely be
unaffected [109].

The three essential characteristics of CNNs that contribute to the sta-
tistical efficiency and trainability are parameter sharing, sparse connec-
tivity, and dimensionality reduction. CNNs have demonstrated superior
performance in computer vision tasks such as image classification, ob-
ject detection, semantic scene classification, etc. Accordingly, CNNs are
increasingly used for UAS imagery and navigation applications [110].
Most notable CNN architectures are LeNet-5 [102], AlexNet [39], VGG-
16 [103], ResNet [108], Inception [101], and SqueezeNet [104].

5.1.3. Recurrent Neural Networks
Recurrent Neural Network (RNN) [111] is a specialized feedfor-

ward neural network tailored to capture temporal dependencies from
sequential data by leveraging internal memory states and recurrent
connections. Consequently, RNNs are well suited to solve sequential
problems by exploiting the temporal correlation of data rendering
them suitable for image captioning, video processing, speech recogni-
tion, and natural language processing applications. Moreover, unlike
CNN and traditional feedforward neural networks, RNNs can handle
variable-length input sequences with the same model.
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Fig. 10. Many-to-many RNN architecture.

RNNs operate on input sequence vectors at varying time steps 𝐱𝑡
and map it to output sequence vectors 𝐲𝑡. The recurrence relation in an
RNN parameterized by Γ can be expressed as

𝐡𝑡 = 
(

𝐡𝑡−1, 𝐱𝑡;Γ
)

(11)

where 𝐡𝑡 represents the hidden state vector at time 𝑡. The recurrence
relation represents a recursive dynamic system. By this comparison,
RNN can be defined as a recursive dynamic system that is driven by an
external signal, i.e, input sequence 𝐱𝑡. The (11) can be unfolded twice as

𝐡𝑡 = 
(

𝐡𝑡−1, 𝐱𝑡;Γ
)

(12)

= 
(


(

𝐡𝑡−2, 𝐱𝑡−1;Γ
)

, 𝐱𝑡;Γ
)

(13)

= 
(


(


(

𝐡𝑡−3, 𝐱𝑡−2;Γ
)

, 𝐱𝑡−1;Γ
)

, 𝐱𝑡;Γ
)

(14)

The unfolded equations show how RNN processes the whole past
sequences 𝐱𝑡, 𝐱𝑡−1, … , 𝐱1 to produce the current hidden state 𝐡𝑡. Another
notable inference from the unfolded representation is the parameter
sharing. Unlike CNN, where the parameters of a spatial locality are
shared, in an RNN, the parameters are shared across different positions
in time. For this reason, RNN can operate on variable-length sequences
allowing the model to learn and generalize well to inputs of varying
forms. On the other hand, traditional feedforward network does not
share parameters and have a specific parameter per input feature pre-
venting it from generalizing to an input form not seen during training.
At the same time, CNN share parameter across a small spatial location
but would not generalize to variable-length inputs as well as an RNN.
A simple many-to-many RNN architecture which maps multiple input
sequences to multiple output sequences is shown in Fig. 10.

For a simple representation, let us assume the RNN is parameterized
by Γ and 𝝓 with input-to-hidden, hidden-to-hidden, and hidden-to-
output weight matrices being 𝐖𝑖ℎ,𝐖ℎℎ, and 𝐖ℎ𝑜 respectively. The
hidden state at time 𝑡 can be expressed as

𝐡𝑡 = 
(

𝐡𝑡−1, 𝐱𝑡;Γ
)

(15)

= 𝛾ℎ
(

𝐖ℎℎ𝐡𝑡−1 +𝐖𝑖ℎ𝐱𝑡 + 𝐛ℎ
)

. (16)

where 𝛾ℎ(◦) is the activation function of the hidden unit and 𝐛ℎ is the
bias vector. The output at time 𝑡 can be obtained as a function of the
hidden state at time 𝑡,

𝐲𝑡 = 
(

𝐡𝑡;𝝓
)

(17)

= 𝛾𝑜
(

𝐖ℎ𝑜𝐡𝑡 + 𝐛𝑜
)

(18)

where 𝛾𝑜(◦) is the activation function of the output unit and 𝐛𝑜 is
the bias vector. RNN could take different forms such as many-to-one,
one-to-many, and one-to-one as illustrated in Fig. 11.

The RNN architectures discussed here captures only hidden states
from the past. Some applications would also require future states in ad-
dition to past. This can be accomplished by a bidirectional RNN [112].
In simple words, bidirectional RNN combines an RNN that depends on
past states (i.e., from 𝐡1,𝐡2,𝐡3,… ,𝐡𝑡) with that of an RNN which looks
at future states (i.e., from 𝐡𝑡,𝐡𝑡−1,𝐡𝑡−2,… ,𝐡1). In RF applications, RNNs
may be used with time series data for spectrum forecasting, spectrum
14

usage pattern analysis, anomaly detection, among others.
5.1.4. Generative Adversarial Networks (GANs)
GANs is a machine learning framework that consists of two neural

networks that compete against each other [113]. The two networks
are called the Generative network (Generator G) and Discriminative
network (Discriminator D) as shown in Fig. 12. The generator G gen-
erates samples from the model distribution and learns to deceive the
discriminator D, while the discriminator learns to distinguish between
samples from dataset and samples from generator. The generative
model generates samples by passing random noise through an FNN,
and the discriminative model is also built using an FNN and outputs
a scalar 𝐷(𝑥) that represents the probability that the samples are from
the dataset. Generative model G is represented by 𝐺(𝑧;𝛤𝑔), where 𝜃𝑔 is
he FNN parameters and 𝑧 is the input noise variable with probability
istribution 𝑝𝑧(𝑧). The discriminator model D is represented as 𝐷(𝑥; 𝜃𝑑 )
here 𝜃𝑑 is the FNN parameters and 𝑥 is the input data samples. D is

rained to maximize the probability of assigning correct label to the
amples from dataset and G is trained to minimize log(1−𝐷(𝐺(𝑧))). The
alue function 𝑉 (𝐺,𝐷) of this minimax game of D and G is given by,

in
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)]

+E𝑧∼𝑝𝑑𝑎𝑡𝑎(𝑧)[log(1 −𝐷(𝐺(𝑧)))] (19)

In each training epoch, the discriminator is trained first for a fixed
umber of steps by inserting real and fake data samples, and update
he discriminator by ascending the stochastic gradients by keeping the
enerator fixed. Once the discriminator is trained for a fixed number
f steps, the generator is updated by descending its stochastic gradient
hile keeping its discriminator fixed and inserting fake data with fake

abels to deceive the discriminator.

.2. CNN based RF fingerprinting

.2.1. ORACLE
The authors propose a CNN framework for RF fingerprinting called

RACLE (Optimized Radio clAssification through Convolutional neuraL
Etworks) [114]. This work provides one of the most extensive evalu-
tions where they demonstrate up to 99% classification accuracy on
ore than 100 consumer-of-the-shelf (COTS) WiFi devices. They also
emonstrate similar results on 16 bit-similar USRP X310 SDRs. Other
ey contributions of this work include the study of hardware-driven
eatures occurring in the transmit chain that causes IQ sample variation.
hey study both static and dynamic channel environment. In the case
f the dynamic channel, they explore how feedback-driven transmitter-
ide modifications that use channel estimation at the receiver can
ncrease the differentiability for the CNN classifier. Essentially, in-
roducing perturbations/imperfections on the transmitter-side to aid
lassification while minimizing the impact on bit error rates.

Specifically, in the context of studying the effects of hardware
riven RF impairments, the authors focus on IQ imbalance and DC
ffset. They use MATLAB Communications System Toolbox to generate
EEE 802.11a standard compliant packets. The transmitter in this case
as a USRP X310 and the receiver was a USRP B210. They also use an
xternal database which consisted of raw IQ collected from 140 devices
hich included phones, tablets, laptops, and drones belonging to 122
anufacturers.

For the case of static channel, the authors used the following
rchitecture;

• Input: Raw IQ with length 128. This was formatted into two-
dimensional real value tensor of size 2 × 128

• Network: Two convolutional layers and two fully connected lay-
ers each with 256 and 80 neurons.

• Kernels: 1st layer consists of 50 1 × 7 filters, second layer consists
50 2 × 7 filters

• Activation Function: Each convolution layer is followed by ReLU

activation
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Fig. 11. RNN architectures. (a) Many-to-one, (b) One-to-many, and (c) One-to-one.
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Fig. 12. Simple Generative Adversarial Networks (GANs) structure.

• Output: A softmax is used in the last layer for classification.

This architecture provided a median classification accuracy of 99%
when up to 100 different devices were used and the performance
dropped slightly to 96% for 140 devices. For the dataset collected using
16 X310 radios, the accuracy was close to 98.6%.

The authors clearly highlight the challenge put forth by dynamic
channels and propose introducing controlled impairments to the trans-
mitter as a solution to alleviate it. While this may work in a setting
where one can make such impairments to the transmit chain, in many
commercial and tactical applications this is not an option at the phys-
ical layer. It can be further argued at that point one is not exactly
exploiting the ‘‘unique’’ RF fingerprint of the device but rather as-
signing the device an artificial tag/id/fingerprint. This is certainly
an interesting area of research that may have its application and
advantages but will also have limitations and disadvantages.

5.2.2. Unmanned aerial vehicles with non-standard transmitter waveforms
The authors propose a multi-classifier-based RF fingerprinting for

UAVs [115]. This work aims to combine outputs of multiple deep neural
networks trained on a different portion of the training set. The authors
create a dataset by collecting signals from 7 identical DJI M100 UAVs
using an USRP X310 equipped with a UBX 160 daughterboard in an RF
anechoic chamber. The IQ signals are captured by flying the UAVs at a
distance of 6, 9, 12, and 15 ft from the receiver. They collect four bursts
of 2 s, each burst containing ∼140 data sequences (examples) for all the
UAVs at the four different distances individually. The authors use 1D
modified versions of AlexNet (AlexNet1D) and ResNet50 (ResNet1D)
neural network architectures for classification. AlexNet1D is a forward
CNN with five blocks (consisting of two 1D convolutional layers with
128 filters of sizes 7 and 5 respectively, followed by a MaxPooling
layer) stacked on top of 2 fully connected layers of sizes 256 and 128
respectively.

This work is the first to show the effect of aerial hovering of UAVs
on the accuracy of DL-based RF fingerprinting. When the network is
trained with all 4 bursts of the UAVs dataset, the network performs
well in identifying the UAVs. But when the network is trained using the
first three bursts and tested on burst 4, both the network architectures
perform with an accuracy of 50%. This drop in accuracy shows the ef-
fect of continuous channel variation and minute UAV movements when
15

hovering. To overcome this effect, the authors propose a multi-classifier f
scheme in which the burst signals from the dataset are partitioned
to form non-overlapping sets and each of these partitions is used as
training sets for identical but independent AlexNet1D Neural Networks.
The outputs of the neural networks are then combined using a two-
level score-based aggregation method. They also propose an algorithm
for determining the number of neural networks to be used in the multi-
classifier scheme. To evaluate the proposed method, the authors choose
to use 12 neural networks. The proposed multi-classifier technique
improves the classification accuracy from 50% when using a single
classifier to 91% when the network is trained using the first three bursts
and tested using the fourth burst.

The authors also propose a Data Augmentation (DA) scheme for
training individual neural networks in the multi-classifier technique.
DA is the method of expanding the training dataset by modifying the
original samples in a proper manner [116,117]. In this work, DA is
performed by normalizing the training batch according to the mean
and standard deviation of the whole dataset. The normalized dataset
is then passed through the DA block where it is convolved with a
block of multi-tap complex FIR filters. The use of DA improved the
accuracy of the multi-classifier technique by up to 95%. This work
also proposes a method for detecting new UAVs (UAVs not included
in the training dataset). Using the proposed multi-classifier with a
data augmentation scheme, the authors show an accuracy of 99% in
detecting new UAVs. The authors clearly state that the improvement
in the accuracy when using the multi-classifier approach comes with
no increase in model size compared to single ResNet1D architecture
but at the cost of a longer testing/training process. However, one can
claim that the data capture in an anechoic chamber eliminates the rich
multipath propagation effects as in the real-world settings.

5.2.3. SEI using the bispectrum
In [118], the authors propose a deep learning-based SEI using the

bispectrum of the received signal as the feature. The bispectrum is esti-
mated by calculating the third-order cumulant of the RF signal. Further,
the bispectrum dimensions are reduced (bispectrum compression) using
the projection method in [119]. The reduced bispectrum is then fed into
a CNN consisting of three convolution layers (30 kernels of size 3 × 3),

fully connected layer with 128 neurons, and a final softmax layer that
aps the outputs to their respective classes.

Signals are collected from five USRPs including, one E310, three
210, and one N210, and the authors show that the proposed method
as an accuracy of 75% in identifying the five USRPs. They also collect
ignals from ten emitters modeled using a memory polynomial model
hat consists of multiple delays and nonlinear functions [120]. The
roposed model has an accuracy of 85% in identifying ten modeled
mitters and 87% in identifying five modeled emitters.

.2.4. Differential Constellation Trace Figure (DCTF)
The authors of [121] propose the use of DCTF to extract RF fin-

erprint features and use a CNN to identify different devices using
he DCTF features. The DCTF is a 2D representation of the differential
elation of the time-series signal. DCTF-based feature extraction was
irst proposed in [122] where they used a minimum distance classi-
ier to achieve an accuracy of 90% in identifying 16 CC2530 ZigBee



Computer Networks 219 (2022) 109455A. Jagannath et al.

a
h
t
t
t
m
a
a
s

modules at SNR≥ 15 dB. In this work, the authors aim to use CNN
s a classifier to improve classification accuracy. The DCTF figure is
ighly influenced by the hardware imperfections that are related to
he RF fingerprint features. These images are classified using a CNN
o identify the devices. To evaluate the performance of the DCTF-CNN,
he authors capture signals from 54 Texas Instruments CC2530 ZigBee
odules using a USRP. The DCTF is computed for each of the signals

nd classified using a network consisting of three convolutional layers
nd one fully connected layer. The three convolutional layers are of
izes 16, 32, and 64, respectively, with a kernel size of 3 × 3. A 2 × 2

max pooling is applied to each of the outputs of the convolutional
layers.

The performance of the DCTF-CNN method is evaluated for different
DCTF image quality and SNR. DCTF image quality depends on the size
of the DCTF size. Lower size DCTF images perform poorly because
of blurring of features, whereas larger size DCTF images have better
performance but with the drawback of requiring more samples and
higher complexity. In this work, the best performance for the designed
CNN is achieved by using a DCTF image of size 65 × 65. Using the
fixed DCTF image size, the authors further investigate the effect of SNR
on performance. The DCTF-CNN achieves a classification accuracy of
93.8% at SNR of 15 dB and 99.1% at SNR 30 dB.

5.2.5. RF signal spectrum
In [123], the authors propose the use of a CNN to identify the

devices from the RF signal spectrum. A dataset consisting of 10,000
signals from each of the five transmitters at an SNR of 20 dB gener-
ated by Monte Carlo experiments with random AWGN and multipath
channels is used. The RF signals are processed by an STFT to convert
the time domain signals to time–frequency domain thereby generating
the RF signal spectrum. RF signal spectrum reflects the characteristics
of the signal in the frequency domain and the change of the frequency
domain of the signal over time. The RF signal spectrum is then fed into
the CNN to classify the signal.

The authors use a modified version of the VGG-16 model to classify
the signals. VGG-16 network model consists of thirteen convolution
layers with a kernel of 3 × 3 and two fully connected layers interlaced
with five maxpool layers, as shown in Fig. 13. The output of the
final layer is fed to a softmax layer to generate transmitter class tags
distribution. The VGG-16 is modified by adding a Batch Normalization
(BN) operation after each convolutional layer and a random dropout
layer after the first two fully connected layers. BN helps in speeding up
the model’s convergence during training, and the dropout layer discards
random neurons leading to a more sparse feature map thereby helping
in reducing overfitting. The network is trained with 1000 signals from
each of the five transmitters using an Adam optimizer to minimize the
loss. The proposed method achieves an accuracy of 99.7% in identifying
five devices.

5.2.6. A massive experimental study
A large-scale RF fingerprinting study on a DARPA dataset – 400 GB

of WiFi and Automatic Dependent Surveillance-Broadcast (ADS-B)
waveforms from 10,000 devices – is presented in [124]. This is the first
large-scale study which elaborates the effect of device population, burst
type, environmental, and channel effects on CNN-based RF fingerprint-
ing architectures. The authors present two architectures: (1) A baseline
model inspired by AlexNet comprising five stacks followed by four fully
connected layers. Each stack is composed of two convolution layers
(128 kernels each with kernel sizes 1 × 7 and 1 × 5 respectively) and a
max pooling layer, (2) A ResNet-50-1D which is a modified ResNet-50
architecture such that it can accommodate one-dimensional time series
IQ samples. The WiFi dataset include emissions from 5117 devices with
166 transmissions on average from each device while the ADS-B dataset
contains 5000 emitters of 76 average emissions. The authors preprocess
the WiFi dataset with band filtering and partial equalization and adopt
16
Fig. 13. VGG-16 network.

a sliding window approach to transform signals in both datasets to a
fixed form suitable for the CNNs.

The authors conduct an extensive RF fingerprinting study in parts by
forming multiple learning tasks for the CNN classifiers. In order to ease
the readers into these 22 learning tasks, we succinctly list the broad
task categories below:

(1) Task 1 — network performance with scaling device population
grouped into four categories (A to D).

(2) Task 1M — similar to Task 1 but under multiburst setting
where each device may emit multiple transmissions for joint
classification. Here again there are four subtasks (A to D).

(3) Task 2 — effect of training set size on classifier performance.
This task has three subtasks (A to C).

(4) Task 3 — effect of channel by collecting captures under varying
time frames and environmental conditions (indoor vs outdoor).
This task has four subtasks (A to D).

(5) Task 4 — assess the effect of SNR on classification accuracy by
four subtasks (A to D).

(6) Task 5 — with 19 bitwise identical emitters.

The dataset is grouped into different subsets to suit the aforemen-
tioned tasks. With the above task assessments, the authors reported that
both baseline and ResNet-50-1D models scale gracefully on Task 1. The
multiburst predictions, i.e., Task 1M along with Task 5 demonstrated
significantly higher accuracy. Task 2 evaluation indicated improvement
in model accuracy with the inclusion of more transmissions in the
training set. Finally, the Tasks 3 and 4 exhibited that the predictions
were affected by environmental and channel conditions. The authors
state that the ADS-B emitter classification manifested as a simpler clas-
sification problem in contrast to WiFi in light of the higher accuracy.
Finally, the baseline model which is the modified AlexNet demonstrated
superior performance in comparison to ResNet-50-1D in several of the
learning tasks, indicating deeper is not always better. These results are
also discussed in [125] where evaluation on a custom dataset collected
by the authors in a laboratory setting is also presented. This custom
dataset is a 7 TB dataset comprising emissions from 20 USRP radios.
We elaborate on this dataset in Section 5.6.

5.2.7. Trust in 5G open RANs
Reus-Muns et al. in [126] propose the use of CNNs augmented

with triplet loss to detect specific emitters through RF fingerprinting.
The authors aim to combat the adversarial impact of the wireless
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Fig. 14. Dilated Causal Convolutional Network.

channel by using a neural network with a triplet-loss function. A
dataset consisting of signals from Base stations that emit standards-
compliant WiFi, LTE, and 5G New Radio (NR) waveforms is used to
evaluate the proposed network. The dataset is described in detail in
Section 5.6.6. The dataset is used to train two CNN classifiers: baseline
CNN and Triplet network. The baseline CNN architecture consists of
four convolutional layers (with 40 filters of size 1 × 7, 1 × 5, 2 × 7,
and 2 × 5, respectively) followed by three fully connected layers and a
final softmax classifier layer. The Triplet network architecture is similar
to the baseline CNN except a triplet loss function is employed. The
triplet loss [127] is designed to enforce class separation into embedding
space and is trained on a series of triples — anchor, positive, and
negative. The triplet loss function aims to train the neural network to
maximize the separation between the anchor and the negative labels
while minimizing the distance between the anchor and the positive
classes.

The proposed baseline and triplet loss CNN are trained and tested
with the WiFi transmissions from the dataset and the overall classifica-
tion accuracy is 92.92% and 99.98%, respectively. Next, the authors
propose three step algorithm that returns a quantitative measure of
trust in a Base Station (BS). This approach assigns a trust category based
on the softmax probability range of the chosen class. For softmax range
≤ 80% the device is assigned No Trust, for the range [80%, 99%] the
device is tagged as Partial Trust, and for ≥ 99% the device will fall under
Trusted category.

5.2.8. Dilated causal convolutional model
The authors propose an augmented dilated causal convolution

(ADCC) network that combines a stack of dilated causal convolution
layers with traditional convolutional layers to classify wireless devices
based on their RF fingerprints [14]. In this work, the authors train
and evaluate the proposed model on transmissions from up to 10,000
devices consisting of WiFi (IEEE 802.11a and 802.11 g) and ADS-B
signals. The authors use the data provided by Radio-Frequency Machine
Learning Systems (RFMLS) research program [128]. It consists of 103
million transmissions from over 53,000 WiFi devices and 3.5 million
ADS-B transmissions from over 10,000 devices.

A dilated convolution is a type of convolution where the filter is
applied over an area larger than its length by skipping input values
with a certain step as shown in Fig. 14 [129].

The proposed ADCC model consists of two main components, the
residual blocks, and the traditional convolution, and pooling blocks.
The model consisted of eight residual blocks in series, each made up
of a gated convolution operation that is causal and dilated (GDCC)
followed by a causal convolution layer with a kernel size of one. Before
the first residual block, the input is passed through a DCC layer with
dilation rate of one. Skip connections from each of the eight residual
blocks are summed and used as the input for the traditional convolution
and pooling blocks, consisting of three stacks of two convolution layers
and a pooling layer each. The first 1600 IQ values are processed by the
ADCC model to generate 2500 features. To extract additional features
from ID-specific information about the device, the authors propose
to extract 2500 features from twenty subsequences of size 200 IQ
values uniformly distributed throughout the rest of the signal. Each
17
of the twenty subsequences is processed by two blocks with causal
convolution and pooling layer, individually. The feature map from each
of the twenty processes is then input to an average pooling resulting
in 2500 features. The 2500 features from the ADCC block, and the
2500 features extracted from the twenty subsequences are concatenated
together and passed as the input to the dense classification layer.

The authors evaluate the proposed method by conducting the learn-
ing tasks Task 1 through Task 4 as in Section 5.2.6. It was noted that for
Task 1 the performance scaled linearly in the logarithm of the device
population. The multiburst accuracy was shown to be better than single
burst accuracy implying performance gains with coherent processing.
Similar to the [124], the accuracy of ADS-B device fingerprinting was
higher in contrast to WiFi which the authors state could be due to
the open air propagation of ADS-B. The Task 2 experiments further
revealed only 2% drop in accuracy when training size is reduced from
501 to 313 suggesting the network efficiency with small training size.
The authors note drastically reduced performance under Task 3 eval-
uations when the channel differs between the training and validation
sets implying the sensitivity of fingerprint features to the propagation
effects. The evaluation in Task 4 exhibited lower accuracy when the
training SNR was higher than the validation SNR, and higher accuracy
when validation SNR was higher than the training SNR.

In a more recent work [130], the authors adopt a multi-burst
approach towards improving the fingerprinting accuracy for large-
scale fingerprinting involving greater population sizes. Specifically, the
multi-burst processing utilizes multiple bursts of the signal from the
same but unknown device (i.e., sharing same label) to drive the noise
level down. The inference is performed on multiple bursts and the class
probability vectors from the inference on each bursts are combined to
derive a final class prediction. The authors report a prediction accuracy
in upwards of 95% across different signal types (WiFi and ADS-B).

To conclude this discussion on RF fingerprinting using CNNs, we
have enlisted the reviewed works in a tabular form in Table 5 for easy
reference.

5.3. Generative Adversarial Networks

5.3.1. Classification based on Auxiliary Classifier Wasserstein GANs
The authors propose a RF-based UAV classification system based

on Auxiliary Classifier Wasserstein Generative Adversarial Networks
(AC-WGAN) in [133]. In this work, the authors collect wireless data
from four different types of UAVs (including Phantom, Mi, Hubsan,
and Xiro) using Agilent (DSO9404 A) oscilloscope with antenna for
indoor environment and USRP N210 with CBX daughterboard for an
outdoor environment. The authors show the proposed system achieves
an accuracy of 95% for recognizing UAVs in an indoor environment.

In this work, the authors improve the discriminative network of
the auxiliary classifier generative adversarial nets (AC-GAN) proposed
in [134] to modify it to classify wireless signals collected from UAVs
and also improve the AC-GAN model following the Wasserstein GAN
(WGAN) [135] model to make the proposed model more stable during
training. RMSProp is chosen as the loss function instead of Adam due
to its better performance in nonstationary problems [136]. During
training, samples (training samples) are fed to the generator and the
discriminator networks to update the negative critic loss by ascending
its stochastic gradient. Then, the testing samples are classified by the
discriminator according to the value of negative critic loss.

The authors capture the wireless signals from the UAVs and apply
a bandpass filter to get the wireless signal in the 2.4–2.5 GHz band,
after which the start point of the signal is detected, and the ampli-
tude envelope is extracted. To reduce the dimensionality of the UAV’s
wireless signals, the authors propose to use a modified PCA. Using the
signals captured indoors from the 4 UAVs and WiFi signal, the authors
test the proposed model and show that the accuracy of classification of
different UAVs is greater than 95% at SNR of 5 dB. They also show that
the proposed classification using AC-WGANs with PCA performs better
than the standard SVM and AC-GAN models and are also suited for

real-time classification over long distances in the range 10 m to 400 m.
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Table 5
CNN architectures for RF fingerprinting.
Work RFF feature RF emitters Performance

Sankhe et al. [114] IQ imbalance & DC
offset

140 devices (phones,
tablets, laptops, &
drones)

99% up to 100 devices,
96% up to 140 devices &
98.6% for dataset [131]

Soltani et al. [115] Multiple data bursts 7 DJI M100 UAVs up to 99%

Ding et al. [118] Bispectrum 1 E310, 3 B210s, & 1
N210

up to 87%

Peng et al. [121] DCTF 54 Texas Instruments
CC2530 ZigBee
modules

93.8% at 15 dB SNR and
99.1% at 30 dB SNR

Zong et al. [123] RF signal spectrum 5 simulated
transmitters

99.7%

Jian et al. [124] Time-domain RF Signal 5117 WiFi devices and
5000 ADS-B devices

Per-transmission ADS-B
accuracy of
91.9%, 76.8%, 92.5% with
100 devices for
Task 1D, 2C, and 4F,
respectively.

Amani Al-Shawabka
et al. [125]

Time-domain RF Signal 20 National Instruments
SDR (12 NI N210 and 8
NI X310)

Training and Testing on
the same day ≥ 87.41%

Guillem Reus-Muns
et al. [126]

Time-domain RF Signal 4 BSs in the POWDER
Platform [132]

99.98% for 10 slices
using majority voting

Josh et al. [14] Time-domain RF Signal 53k WiFi and 10k
ADS-B devices

Top-five accuracy of
97%, 95%, 99%, 98%
with 100 devices for
Task 1D, 2C, 3E, and
4F, respectively.
5.3.2. GANs with adversarial learning
In [137], an adversarial learning technique for identifying RF trans-

mitters is implemented using generative adversarial nets (GANs). The
authors also implement a CNN and DNN based classifier that exploits
the IQ imbalance present in the received signal to learn the unique
fingerprint features for classifying the devices. The dataset used in
this work consists of QPSK modulation signals from eight USRP B210s
received using an RTL-SDR and are considered as signals from trusted
transmitters. With the help of an adversary, the generator model gen-
erates random signals with noise and is passed to the discriminative
model as input. The discriminative models of the GANs take input
from both the generator model and trusted transmitters and improve
the random signal to imitate the real data by giving feedback to the
generator model for tuning the hyperparameters. The generator model
network consists of two fully connected layers with 512 and 1024
nodes, and the discriminative model network is made of three fully
connected layers with 1024, 512, and 2 nodes with dropout layers
between the first two fully connected layers. The GANs is modeled to
identify if the signal is from a trusted transmitter. The proposed GANs
model identifies the 8 trusted transmitters with an accuracy of 99.9%.

To classify the signals to identify the transmitters, the authors design
and implement a CNN and a DNN. The CNN as shown in Fig. 15(a) has
three Conv2D layers of size 1024, 512, and 256 filters with a kernel
of size 2 × 3, followed by three fully connected layers of 512, 256,
and 8 nodes. A MaxPooling2D layer of size 2 × 2 is applied after each
f the three convolution layers and a dropout layer is applied after
ach of the convolution and fully connected layers. The DNN as shown
n Fig. 15(b) has three fully connected layers with 1024, 512, and 8
odes with dropout layers between the first two fully connected layers.
he proposed CNN and DNN have a classification accuracy of 89.07%
nd 97.21%, respectively, for classifying four devices and 81.59% and
6.6%, respectively, for eight USRP devices. The classification accuracy
f DNN is improved to 99.9% by using the proposed GANs model to
istinguish trusted transmitters from fake ones before classifying them.
18
Fig. 15. Proposed CNN and DNN networks to classify signals.

5.4. Probabilistic neural network

5.4.1. Energy spectrum based approach
The authors in [138] propose a transient-based RF fingerprinting

approach for extracting the unique characteristics of the wireless device
from part of the energy spectrum of the transient signal. The work
aims at reducing the computational complexity of feature extraction
compared to techniques based on spectral fingerprinting. The proposed
method is evaluated using data collected from eight IEEE 802.11b WiFi
transceivers.
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In this work, the instantaneous amplitudes of the captured signals
are used to detect the transient. The starting point of the transient
is estimated by using a Bayesian ramp change detector [139], and
the endpoint is estimated by using a sliding window to calculate the
average instantaneous amplitude of the samples. The first peak before
the next steady state signal starts is chosen as the end point. Then the
energy spectrum is obtained using discrete Fourier transform (DFT). By
examining the frequency domain energy spectrum of these transients,
the authors deduce that most of the information is concentrated in low-
frequency components of the spectrum. Hinging on these observations,
the authors propose that the number of energy spectral coefficients (𝐾)
that carry the characteristic information can be calculated as,

𝐾 =
[

𝑊
𝛥𝑓

]

(20)

where [⋅] denotes integer part of 𝐾, 𝑊 is the transmission bandwidth,
and 𝛥𝑓 is frequency resolution of the DFT given by

𝛥𝑓 = 1
𝑇𝑑

= 1
𝑁𝑇𝑠

=
𝑓𝑠
𝑁

(21)

where 𝑁 is the transient duration (in samples), 𝑇𝑑 is average transient
uration in seconds, 𝑇𝑠 is sampling period, and 𝑓𝑠 is sampling fre-

quency. Lastly, the classification is carried out by using a probabilistic
neural network (PNN) classifier. A PNN is a feedforward neural network
that estimates the probability density function (PDF) of each class using
the Parzen window [140]. Then, using the PDF of each class for the
given input, the class with the highest posterior probability is estimated
using Bayes’ rule.

The classification performance of the proposed technique was car-
ried out using a dataset collected from eight different IEEE 802.11b
WiFi devices with 100 transmissions from each device. An average
transient duration was calculated for the data in the training set for a
sampling rate of 5 GSps to determine the spectral feature length using
qs. (20) and (21). The proposed method has a classification accuracy
f 90% and 97.91% at 0 dB and 25 dB, respectively.

.4.2. Effect of sampling rate on transient-based fingerprinting
The authors in [141] investigate the effect of sampling rate on

he classification performance of a transient-based RF fingerprinting
ethod. A Bayesian ramp detector is employed to detect turn-on tran-

ient and amplitude features (instantaneous amplitude responses), and
ts dimensionality reduced PCA features are extracted and used as the
nput features to train a PNN classifier to identify devices. The authors
ollect data from eight different IEEE 802.11b WiFi transmitters at a
ampling rate of 5 GSps. A total of 100 transmissions are captured from
ach of the eight transmitters. To study the effect of sampling rate,
uthors use the decimation process to downsample the 5 GSps to 2.5
Sps, 1 GSps, 500 MSps, 200 MSps, 100 MSps, 50 MSps, and 28 MSps.

The classification accuracy is evaluated by conducting two exper-
ments. In the first experiment, downsampling was performed after
etection of the transient at a higher sampling rate. In the second
xperiment, transient detection was performed after downsampling the
riginal signal. The average classification accuracy of both amplitude
nd PCA features at all the sampling rates was 97.7% and 97.5% for
he first and second experiment, respectively, indicating that sampling
ates have very little to no impact for transient based RF fingerprinting
f WiFi transmitters.

.5. Attentional learning

Attention mechanism was first introduced for RF fingerprinting
n [142]. The authors adopt a cross-domain attentional architecture
hat extracts spatio-temporal, temporal, and time–frequency features
rom 1024 × 1 raw IQ input samples. A 1D/2D CNN architecture in
onjunction with gated recurrent units (GRUs) and STFT processing
ere adopted to extract the multiple domain features from the raw
19

Q samples. Further, the capability of the model to perform multiple
tasks (emitter and protocol recognition) were demonstrated with the
MTL version of the proposed architecture. The authors perform real-
world experimental evaluation under single day train–test (TTSD) and
mixed days train–test (TTMD) scenarios. Here, the authors consider
real-world IoT devices such as Raspberry Pis and Lenovo laptops with
combo chipsets (emitting Bluetooth and WiFi waveforms from a single
chipset) and achieve a fingerprinting accuracy of 84.3% and 63.8%
under the TTSD and TTMD scenarios respectively (while performing
100% protocol recognition) in identifying emissions from 10 COTS
chipsets.

A recent work in attentional learning for Bluetooth fingerprinting
was reported in [143]. Here, the authors tuned into 2 MHz of the
challenging frequency hopping Bluetooth spectrum for identifying 10
COTS Bluetooth emitters. A scalable, hybrid CNN-GRU architecture
with ability to support input tensor length of up to 1 MS is pro-
posed. The authors demonstrate the computational efficiency of the
proposed architecture in contrast to the benchmark model and report a
16.9× fewer floating point operations (FLOPs) and 7.5× lesser trainable
parameters. The significance of processing greater sample lengths in
identifying the challenging frequency hopping Bluetooth waveform was
elaborately studied with reported accuracy of up to 91% in identifying
10 COTS emitters.

5.6. Open RF fingerprinting dataset

A soaring issue in the applied AI/ML for RF realm, unlike other
prominent fields such as computer vision and natural language process-
ing, is the lack of availability and uniformity of diverse and large-scale
datasets which can be integrated as well as easily ported to AI/ML
frameworks such as Keras [144], PyTorch [145], TensorFlow [146],
etc. A few datasets have been released recently to aid deep learning for
wireless communications [36,147–149] for modulation and protocol
classification, however, due to the lack of momentum and a common
standard to organize the datasets in contrast to computer vision and
NLP in AI/ML, these are not integrated yet with such frameworks.
Another factor contributing to the dataset inaccessibility is the obliv-
iousness of practitioners in this field of the available datasets, although
limited. Accordingly, here we present a summarized excerpt on each of
the openly available RF fingerprinting dataset to educate the reader.

5.6.1. Large-scale bluetooth dataset from 86 smartphones
In [150], the authors present an elaborate database comprising

Bluetooth RF recordings from COTs smartphones of different makes
and models captured at different sampling rates. The dataset contains
recordings captured over the period of several months since the unique
fingerprint from hardware impairments do not vary significantly over
short time spans — days, weeks, or months. The smartphones were kept
at a fixed distance of 30 cm from the receiving antenna connected to
a high sampling rate oscilloscope (Tektronix TDS7404) along with a
low resolution 8-bit ADC. Since the Bluetooth operate at the ISM2400
band, a COTS antenna operating in this frequency range was utilized.
The edge detection mode of the oscilloscope was leveraged to record
the samples of duration 10 μs into a text format (.txt). The recorded
samples are real-valued time series (voltage/times). The entire database
is split into sub-datasets comprising Bluetooth signals sampled at 5
GSps, 10 GSps, 20 GSps, and 250 MSps. Corresponding to each dataset,
150 Bluetooth signals from each device was recorded yielding a total of
12,900 captures from 86 smartphones. The authors also note that the
spur signals introduced by the oscilloscope were removed by band pass
filtering. Moreover, the filtered samples are normalized such that the
samples are in the range of −1 to +1.
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Table 6
Summary table of open RF fingerprinting datasets.
Dataset Waveform Emitter

count
Emitter type Receiver Dataset

format
Generated/
Real-world

Frequency

[150] Bluetooth 86 Smartphones Tektronix
TDS7404

.txt Real-world 2.4 GHz

[151] Non-standard 17 Drone remote
controllers

Keysight
MSOS604A

.mat Real-world 2.4 GHz

[152] ADS-B 100 Commercial
aircraft

BladeRF .mat Real-world 1090 MHz

[153] ADS-B > 140 Commercial
aircraft

USRP B210 .mat Real-world 1090 MHz

[131] IEEE 802.11a 16 USRP X310 USRP B210 SigMF Generated 2.45 GHz

[154] Non-standard 7 DJI M100 USRP X310 SigMF Generated 2.4065 GHz

[155] IEEE 802.11a,
LTE, 5G-NR

4 USRP X310 USRP B210 SigMF Generated 2.685 GHz

[156] IEEE 802.11a/g 20 USRP X310
USRP N210

USRP N210 SigMF Generated 2.432 GHz
5.6.2. Dataset containing RF signals from 17 drone remote controllers
The authors of [151] released a RF signal dataset to enable re-

searchers to develop UAV identification techniques based on the signal
captured from the remote controllers. The communication between
UAV and the remote controller can enable AI/ML frameworks to ef-
fectively fingerprint UAVs. The captures were recorded by placing the
drones in an idle state such that only the remote controller data is
captured. The receiver frontend comprised a 6 GHz bandwidth Keysight
MSOS604 A oscilloscope, 2.4 GHz 24 dBi grid parabolic antenna, and
a low-noise amplifier operating from 2 GHz to 2.6 GHz. The distance
between the drone remote controller and the receiving antenna was
varied from 1 m to 5 m. The RF signal is recorded as digitized volt-
age vs time samples at a sampling rate of 20 GSps with 5 Million
samples per signal. The waveforms comprise emissions from 17 drone
remote controllers from eight different manufacturers. The database is
containerized in a MATLAB (.mat) format.

5.6.3. Real world ADS-B signals dataset from over 140 commercial air-
crafts

A real world dataset containing ADS-B signal emissions from more
than 140 commercial aircrafts to air traffic control (ATC) centers is
provided by the authors of [153,157]. Commercial aircrafts broadcast
their geographical coordinates along with their unique International
Civil Aviation Organization (ICAO) identifiers to the ATC centers using
ADS-B standard. The ADS-B signals are captured with a USRP B210
receiver tuned to 1090 MHz and at a 8 MSps sampling rate over a
period of 24 h at the Daytona Beach international airport. The authors
decoded the ADS-B messages to extract the aircraft identity codes and
utilized the messages from over 140 most frequently seen aircrafts to
form the dataset. The authors have another dataset of ADS-B waveforms
from 100 aircrafts at [152] received with a BladeRF SDR. Both datasets
are containerized into MATLAB (.mat) format.

5.6.4. ORACLE RF fingerprinting dataset of IEEE802.11a from 16 emitters
The authors of [131] present a WiFi IEEE 802.11a emitter dataset

to detect unique radios using ORACLE RF fingerprinting approach.
The dataset contains two sets: Dataset#1 and Dataset#2. Dataset#1
consists of IEEE 802.11a standard Wireless Local Area Network (WLAN)
frame IQ samples from 16 USRP X310 SDRs collected using a USRP
B210 Radio sampling at a rate of 5 MSps at a center frequency of
2.45 GHz. For each of the 16 transmitters, the IQ samples are captured
at a varying transmitter–receiver distance from 2 ft–62 ft in steps of
6 ft. Dataset#2 consists of demodulated IQ symbols with intentional
impairment introduction such that the synthetic hardware impairments
dominate the channel effects. Accordingly, the authors use the GNU Ra-
dio function set_iq_balance to introduce intentional IQ imbalance (16 IQ
20

imbalance configurations corresponding to 16 emitters) to the transmit
chain of the RF daughterboard. The recording are the demodulated IQ
symbols after equalizing over-the-cable transmissions from USRP X310s
collected using USRP B210 Radio. Both the datasets are formatted
according to SigMF specifications wherein each data file in binary
format is accompanied by a JSON metadata file.

5.6.5. Non-standard waveforms from 7 hovering unmanned aerial vehicles
(UAVs)

In [154], the authors create a dataset for RF fingerprinting of hov-
ering UAVs. The dataset consists of signals collected from 7 identical
DJI M100 UAVs in an RF anechoic chamber. Signals are captured using
an USRP X310 with UBX 160 USRP daughterboard. The receiver is
tuned to the 10 MHz of downlink channel centered at 2.4065 GHz. The
signals are captured by flying the UAVs individually at distances of 6,
9, 12, and 15 ft from the receiver. Each capture consists of 4 cycles
of recording IQ samples for ∼ 2 s and pausing for ∼ 10 s, resulting in
4 non-overlapping bursts with ∼ 140 interleaved short periods of data
and noise in each burst. Accordingly, with a total of 7 UAVs where each
are flew at 4 distances with 4 bursts (each of ∼ 140 examples) at each
distance, the dataset provides over 13k examples of ∼ 92k IQ samples
per example. The dataset is in SigMF format with data of each capture
stored in binary format accompanied by a JSON file with the metadata
of the capture.

5.6.6. RF fingerprinting on the POWDER platform with 4 emitters
The authors of [155] provide a dataset from 4 different emitters

transmitting waveforms belonging to 3 wireless standards to demon-
strate and evaluate feasibility of RF fingerprinting of base stations with
a large-scale over-the-air experimental POWDER platform [132]. Using
a fixed endpoint (Humanties) USRP B210 receiver, IQ samples are
collected from four emitters in the POWDER Platform: MEB, Browning,
Beavioral, and Honors. The emitters are bit-similar USRP X310 radios
which transmit standard compliant IEEE 802.11a, Long Term Evolution
(LTE), or 5G New Radio (5G-NR) frames generated using WLAN, LTE,
and 5G toolboxes from MATLAB, respectively. The USRP B210 receiver
is tuned to record 2.685 GHz (Band 7) at a sampling rate of 5 MSps for
WiFi and 7.69 MSps for LTE and 5G. On two independent days, five sets
of 2 s of IQ samples are recorded from each of the links. Consequently,
the dataset is organized into a Day-1 and Day-2 sets. The dataset follows
the SigMF specifications.

5.6.7. Exposing the fingerprint dataset
Al-Shawabka et al. create and share a dataset [156] for experiment-

ing and evaluating radio fingerprinting algorithms. WiFi standard IEEE
802.11a/g signals are collected from 20 National Instruments SDR (12
NI N210 and 8 NI X310) running GNU Radio. Four datasets are created
with three different channel conditions and two different environments.
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Dataset ‘‘Setup 1’’ consists of signals captured from 20 transmitting
SDRs with each transmitter using a dedicated Ettus VERT2450 antenna
and varying distance from the receiver. The dataset collection process is
repeated on ten days. Dataset ‘‘Setup 2’’ is captured similarly to ‘‘Setup
1’’, but all the SDR use a common Ettus VERT2450 antenna making all
20 devices equidistant from the receiver. This leads to all transmissions
experiencing similar channel and multi-path conditions. The dataset
collection process is repeated on two different days. Dataset ‘‘Setup 3’’
is collected by capturing the WiFi signals from 20 transmitters using a
single coaxial RF SMA cable and a 5 dB attenuator. Thereby, all signals
experience the same channel conditions and eliminate any multipath
conditions. The dataset collection process is repeated on two different
days. Datasets ‘‘Setup 1’’, ‘‘Setup 2’’, and ‘‘Setup 3’’ are collected in
an arena ‘‘in the wild’’ environment. Dataset ‘‘Setup 4’’ is collected
similar to ‘‘Setup 2’’ but in an anechoic chamber with each transmitter
connected to the same antenna. All the ‘‘Setup 4’’ IQ samples are
collected on one day. The following three IQ samples are collected: Raw
IQ before FFT, Raw IQ after FFT, and Equalized IQ for all the datasets.
Each of the IQ sample files is labeled using SigMF and is accompanied
by a JSON file containing the metadata of each of the transmission
settings.

A tabular summary of the openly available RF fingerprinting
datasets is presented in Table 6 to allow the reader to contrast the
distinguishing features. Although the datasets [131,154–156] are syn-
thetically generated, they follow the SigMF specifications allowing
easy integration into AI/ML frameworks in contrast to the other dis-
cussed real-world datasets which would require specific import scripts
requiring MATLAB or csv readers.

6. Research challenges and future direction

In so far, we have seen the various wireless device fingerprinting ap-
proaches and how it plays a role in wireless security. For completeness
of the presented subject, in this section, we motivate future research in
this direction by identifying a few key open research problems and op-
portunities towards developing a robust radio frequency fingerprinting
system (RFFS). These challenges are also illustrated in an IoT network
setting in Fig. 16 to ease the reader into the potential research avenues.

Impact of receiver hardware: Similar to how the transmitter hard-
are introduce unique distortions, the receiver hardware that captures
nd processes these emissions for fingerprinting can impact the fin-
erprinting approach. Specifically, the phase noise, clock offsets, filter
istortions, IQ imbalance, etc., introduced by the receiver hardware
ould etch its own unique fingerprint to transform the transmitter
ingerprint to appear as from a rogue or unidentified emitter. The
DC sampling rate as well as bandwidth of low pass filter (LPF) play
n equally important role in retaining the fingerprint features that
eside in the side lobes of the power spectrum density (PSD). Higher
ampling rates were shown to retain the fingerprint features at a
ost of increased noise using actual MicaZ sensors [158]. Moreover,
he effect of antenna polarization and orientation at the transmitter
nd receiver end can cause fluctuations in radiation pattern affecting
he fingerprint extraction performance. The imperfection of emitter
ntenna hardware can also contribute to the fingerprint feature set
nabling wireless emitter identification [69]. We argue here that the
umber of receiver antennas, type, their orientation, and polarization
an impact the classification performance of the fingerprinting system.

One way to tackle this in a supervised learning setting would be to
ncorporate captures from multiple receiver hardwares corresponding
o an emitter in the dataset. Such a larger distribution of training
ata would allow the model to generalize and differentiate the emitter
ingerprint from the recorded waveforms. The independence of finger-
rinting algorithm can be assessed by training on samples captured
y a particular receiver hardware and evaluating the learned emitter
21

eatures by testing on samples from another receiver hardware.
Vulnerabilities of RFFS: The broadcast nature of wireless emit-
ters renders them exposed and susceptible to identity spoofing. Few
such attacks are DoS, impersonation, bandwidth theft, etc. It is of-
ten overlooked that passive receiver threats can build up their own
dataset of emissions from specific transmitters to build cognitive RFFS.
Developing or perturbing the emitter fingerprint such that it cannot
be extracted by passive listeners while allowing only legit receivers
to extract or identify the signature is another interesting research
problem to enhance wireless security. Generally, it is assumed that RF
fingerprinting is robust to impersonation attacks due to the difficulty
in reproducing the frontend impairments with replay attacks since that
will introduce the hardware defects of the replaying device. This area
is pristine and the research here is limited currently. In literature,
it was shown that transient-based RF fingerprinting is more resilient
to impersonation attacks in contrast to modulation-based RF finger-
printing [159]. Another work in [160] analyzed the effect of several
low-end receivers (manufactured with inexpensive analog components)
on the resilience of modulation-based RF fingerprinting to imperson-
ation attacks. Their evaluation revealed that the RF fingerprint from a
specific transmitter varies across the receivers. The receiver’s hardware
imperfections as we have discussed above contributes to the fingerprint
feature set. Further, they exploit this fact to thwart the impersonation
attacks and state that the impersonator would not be able to extract the
fingerprint features contributed by the receiver hardware, rendering
an even robust RFFS. Another threat that can disrupt the RFFS are
jamming DoS attacks whereby the intruder can continuously transmit
in the operating frequency. This area will require more analysis to
evaluate the resiliency of RFFS to such DoS attacks.

On the flip side, jamming can also be used as a defense strategy
to mask the RF fingerprint of transmitters for covert and confidential
operations. RF fingerprint obfuscation – such that the fingerprint can only
be extracted by the legitimate receiver while remaining undetectable
to others – was experimentally studied on WiFi signals in [161]. The
authors achieve this by introducing randomized phase errors such that
only the legitimate receivers with a preshared key and randomization
index can decode the message as well as the fingerprint.

Robustness in realistic operation environment The fingerprinting
literature to date (at the time of writing this article) has only looked at
the problem of identifying emitter signature when only one emitter is
active. An even challenging problem would be when multiple emitters
are active, this is typical of a real-world setting. Such a scenario would
require the fingerprinting algorithm to separately distinguish and ex-
tract the signatures of each emitters from the received signal clutter.
Another challenge involved in studying such a scenario would be the
availability of a dataset that incorporates multiple active emitters.
Each emitter transmission creates its own propagation path from the
transmitting antenna to the radio frontend of the receiver hardware.
The effect of multipath propagation effects and location of the emitter
relative to the receiver is enough to create a unique signature which
would vary with location and wireless channel effects. These dynamic
fading and location effects due to its inherent randomness could mask
the pure emitter signature leading to false alarms and misclassification.

In [158] authors demonstrate the effect of small scale and large
scale fading on the PSD. It was illustrated that the side lobes of the PSDs
that carry the most identity information were significantly distorted
due to multipath channel effects when the sensors were far apart than
when they were in close proximity to the receiver. Equalization at
the receiver that would compensate for the multipath effects without
deteriorating the fingerprint features is still an open research problem.

Simulation–reality gap: An equally important point to consider is
the realism in the generated or synthetic data. The generalization of
deep learning models to actual radio emissions after being trained on
synthetic data is difficult to achieve. Such a capability gap arises from
the assumptions in terms of the transmitter hardware imperfections and
fading channel while generating the synthetic dataset in contrast to the

actual hardware and environmental effects.
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Fig. 16. Wireless IoT fingerprinting challenges.

A towering issue that leads to generating synthetic data is the lack
of or limited access to real-world data from actual IoT sensors and
radios. This is not the case in more popular machine learning fields
such as natural language processing (NLP) and computer vision (CV)
where a plethora of large-scale datasets such as MNIST [162], Stanford
sentiment [163], IMDb [164], Sentiment140 [165], etc., are readily
available. As highlighted in Section 5.6, there are several recent efforts
to mitigate this challenge. Further, the lack of a uniform standard for
the dataset structure and organization stymies the adoption of existing
datasets to different machine learning frameworks. We state here that
training the neural networks with a larger distribution of data is the
key to a generalized performance. Generalization is the first step to
deployment-ready fingerprinting solutions.

7. Conclusion

This article presented a systematic review of the RF fingerprinting
approaches over the past two decades by first broadly classifying them
into traditional and DL-based followed by dissecting each in a catego-
rized manner. We first provided context to the reader by introducing
and summarizing the three pillars of SIGINT — modulation recogni-
tion, protocol classification, and emitter identification. We present an
invaluable and concise discussion on the diverse applications of RF
fingerprinting to highlight the practical use cases of the subject under
study. To elucidate and dilute the vast literature on traditional and DL-
based fingerprinting approaches, we present a categorized and clear
layout of each. We have also provided tabular comparative study of
the reviewed works wherever applicable for summarizing in a straight-
forward manner. In order to equip the reader with the essential toolkit
to delve into this topic, we reviewed the most relevant DL approaches
in a tutorial manner prior to diving into the DL-based fingerprinting
techniques. Since the knowledge of and access to openly available
datasets are key to practice the reviewed approaches, we have provided
an elaborate discussion on the most relevant RF fingerprinting datasets.
Finally, in order to stimulate future research in this realm, we present
a roadmap of potential research avenues in an illustrative manner.
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