
Adversarial Classification of the Attacks on Smart Grids Using
Game Theory and Deep Learning

Kian Hamedani
ECE Department of Virginia Tech, Blacksburg, VA, USA.

Marconi-Rosenblatt AI/ML Innovation Lab,
ANDRO Computational Solutions LLC, Rome, NY, USA

hkian@vt.edu

Lingjia Liu
ECE Department of Virginia Tech

Blacksburg, VA, USA
ljliu@vt.edu

Jithin Jagannath
Marconi-Rosenblatt AI/ML Innovation Lab,

ANDRO Computational Solutions LLC, Rome, NY, USA
jjagannath@androcs.com

Yang (Cindy) Yi
ECE Department of Virginia Tech

Blacksburg, VA, USA
yangyi8@vt.edu

ABSTRACT
Smart grids are vulnerable to cyber-attacks. This paper proposes
a game-theoretic approach to evaluate the variations caused by
an attacker on the power measurements. Adversaries can gain fi-
nancial benefits through the manipulation of the meters of smart
grids. On the other hand, there is a defender that tries to maintain
the accuracy of the meters. A zero-sum game is used to model the
interactions between the attacker and defender. In this paper, two
different defenders are used and the effectiveness of each defender
in different scenarios is evaluated. Multi-layer perceptrons (MLPs)
and traditional state estimators are the two defenders that are stud-
ied in this paper. The utility of the defender is also investigated
in adversary-aware and adversary-unaware situations. Our simu-
lations suggest that the utility which is gained by the adversary
drops significantly when the MLP is used as the defender. It will
be shown that the utility of the defender is variant in different
scenarios, based on the defender that is being used. In the end, we
will show that this zero-sum game does not yield a pure strategy,
and the mixed strategy of the game is calculated.

CCS CONCEPTS
• Security andPrivacy→ Intrusion/anomaly detection; •Deep
Learning → Adversarial examples.
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1 INTRODUCTION
Smart grids are new infrastructure that integrates energy by many
different technologies, such as telecommunication, the internet,
and electronic devices in this era of Internet-of-Things (IoT). This
convergence of different technologies brings up some opportunities
and challenges as well. The main opportunity that smart grids pro-
vide is a bidirectional flow of electricity and information between
power suppliers and customers, which will result in a more efficient
distribution of power. However, due to the integration of different
technologies, the smart grids are more vulnerable to cyber-attacks
[11]. False data injection (FDI) attacks are known to be one of the
most malicious cyber-attacks in smart grids[8]. Cyber security tries
to maintain reliable and secure communication between different
components of the network, including communication networks
and computer systems[7]. As a result of this secure communica-
tion, supervisory control and data acquisition (SCADA) system can
have a better estimation of the network state. State estimation is a
critical process in a control system and due to this fact, the SCADA
is usually a target for attackers. Injecting false data to the SCADA
manipulates the state estimation and it can cause economic gains
for the attacker[7].

Game theory has shown to be a powerful approach to model and
capture the complex interactions among the different players of
electricity markets, which in some cases have a conflict of inter-
ests together[14]. During the last decades, game theory has been
applied in many different fields, including economics, politics, and
psychology. Due to the demand of having intelligent, autonomous,
and flexible networks, in which devices can make rational decisions,
game theory has also been applied in wireless communication net-
works and smart grids[6, 13–15]. Different devices or software
can be the players in the network security domain. These play-
ers make their decisions independently and can be cooperative,
non-cooperative, or even malicious towards each other[9]. As a
result of this interaction among the players, the rational strategic
decisions that they affect the network security and can be modeled
as a game[9]. However, it is essential to consider the role of bad
data detectors (BDD) while analyzing the strategic decisions and
interactions among the players. The game theory can only study
the interactions between the attackers and defenders, while the ma-
chine learning methods are being vastly used as the BDD. Therefore,

https://doi.org/10.1145/3468218.3469047
https://doi.org/10.1145/3468218.3469047
https://doi.org/10.1145/3468218.3469047


WiseML ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Kian Hamedani, Lingjia Liu, Jithin Jagannath, and Yang (Cindy) Yi

it is necessary to incorporate the machine learning-based BDDs in
the game-theoretical formulation of the smart grids.

Machine learning-based approaches have also been widely stud-
ied for several applications in the realm of IoT [5]. Similarly, ma-
chine learning has been applied for FDI detection in smart grids [11].
Artificial neural networks, support vector machines (SVM), and
k-nearest neighbor (KNN) are few examples of different machine
learning algorithms that have been used for this purpose [11]. Ma-
chine learning-based approaches have shown better performance
than the traditional state vector estimation (SVE) in detecting the
FDI in smart grids. Esmalifalak et al [2] have applied dimension
reduction for mapping the data collected from the network and
used both supervised and unsupervised machine learning algo-
rithms to detect the stealth data injections in smart grids. In [16],
the performance of SVM, and KNN in detecting the false data in an
IEEE-30 bus system under balanced and imbalanced data scenarios
are studied. Mohammadpourfard et al [10] proposed an unsuper-
vised anomaly detection method in smart grids which considers
the effect of wind power generation and topology configuration.
Zhao et al [17] have proposed a method based on short-term state
forecasting which considers a temporal correlation among mea-
surements. Moslemi et al [12], proposed an approach based on
maximum likelihood (ML) which is decentralized, and the near
chordal sparsity of smart grids is considered to detect the FDI. Es-
mailfalak et al [3] proposed a game theory-based approach to study
the utility of the attacker and defender, while the defender is using
a traditional state estimator as the BDD.

In this paper, we use a zero-sum game theory approach to quan-
tify the utility gain of the attacker. We will show that different
choices of the defender can significantly affect the gain of the at-
tacker. In one scenario, the traditional state estimator, and in the
other scenario an MLP is selected as the defender. We assume that
the attacker and the defender are not able to attack and defend all
the meters, andcompetition exists between attacker and defender to
maximize and minimize the variations caused in smart meters due
to false data injection respectively. The attacker can gain higher
financial utility if the false variations of the measurements read
by the meters are maximized. We will demonstrate that when the
defender is chosen to be based on an MLP, the utility that the
attacker can gain is much less than the case the defender is a tra-
ditional state estimator. The utility of the defender is also studied
in different scenarios. The utility of the defender is defined as the
number of the compromised measurements that the defender can
accurately detect. Adversary-aware and adversary-unaware are
the two main scenarios that are used to study the utility of the
defender. In the adversary-aware situation, the attacker is aware of
the existence of the defender and tries to maximize its attack utility
concerning the parameters of the defender. On the other hand, in
an adversary-unaware scenario, the attacker is unaware that there
exists a defender and it optimizes its attack regardless of the de-
fender parameters. We will show that the utility of the defender is
different in these two situations. So far in the literature, only state
estimators have been used as the BDD in the game-theoretic for-
mulations of smart grids security and to the best of our knowledge,
this is the first time that MLPs have been used as the BDD in the
game-theoretic approach of studying smart grids security.

The organization of this paper is as follows: Section II represents
the problem formulation. In Section III, the simulation results are
discussed. Section IV represents the conclusion.

2 PROBLEM FORMULATION
2.1 System Model
In direct current (DC) power flow transmission, a linear equation
is used to approximate the power flow[3]:

𝑃𝑖 𝑗 =
𝑥𝑖 − 𝑥 𝑗
𝑅𝑖 𝑗

, (1)

where 𝑃𝑖 𝑗 is the power flowing between bus 𝑖 and 𝑗 , 𝑥 is the bus
voltage phase angle, and 𝑅𝑖 𝑗 is the reactance of transmission line
between buses 𝑖 and 𝑗[3]. The control center observes the measure-
ment vector z [4]:

z = Hx + e, (2)
where z is the measurements vector, H is the Jacobian matrix, x
is the state vector, and e is the environment noise. The attacker
can compromise the state estimation by injecting false data, a. The
attack formulation can be expressed as follows:

z = Hx + a + e. (3)
The estimated state vector can be calculated as:

x̂ = (H𝑇 ∧−1 H)−1H𝑇 ∧−1 z = Mz, (4)
where M = (H𝑇 ∧−1 H)−1H𝑇∧−1, and ∧ is the noise covariance
matrix.

2.2 Attack Against State Estimation
The real time pricing can be affected if the adversaries can success-
fully launch attacks on the results of the real time state estimation.
The main goal of the attacker is to perform the attack in a way
that it will not be detected by the BDD. The first thing that the
attacker needs to know, is the group of measurements that can
increase or decrease the congestion in the transmission line after
the false data is injected. It can be seen in Eq. 1 that any changes
in the state (voltage phase angle) of any bus can change the power
measurements of transmission lines. Combining Eq. 1 and 4, gives
us the estimated power as follows[3]:

P̂𝑖 𝑗 =
x̂𝑖 − x̂𝑗
R𝑖 𝑗

=
(M𝑖 −M𝑗 )𝑇

R𝑖 𝑗
z

= G𝑇 z = G𝑇+z+ + G𝑇−z−,
(5)

where G𝑇 =
(M𝑖−M𝑗 )𝑇

R𝑖 𝑗
. The group of positive and negative mea-

surements where increasing or decreasing their values by adding
a false data, z𝑎 > 0, leads to increasing or decreasing the conges-
tion in transmission line are shown with z+ and z−, respectively.
In this paper we assume that z+ and z− belong to groups 𝐾 and
𝐿, respectively. It is also assumed in this paper that the attacker
knowsH, and as a result, it can make a distinction between groups
𝐾 and 𝐿. Adversaries try to perform their attacks in a way that
cannot be detected by the BDD. In the case that BDD is chosen
as the traditional state estimator, the residual value between the
actual measurements and the estimated values, 𝜌 , has to be less
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than a certain threshold value, 𝜁 , that the attack cannot be detected
by the BDD. The residual value is calculated as follows:

𝜌 = z −Hx̂ = z0 + z𝑎 −H(Mz0 +Mz𝑎)
= z0 −HMz0 + z𝑎 −HMz𝑎 = 𝜌0 + 𝜌𝑎

(6)

where z0 is the safe measurement vector, z𝑎 is the measurement
vector which is compromised by the false data injected by the
adversary, 𝜌0 = z0 −HMz0, and 𝜌𝑎 = z𝑎 −HMz𝑎 . It can be seen in
Eq. 6 that 𝜌𝑎 corresponds to the residual value caused by the false
data injected by the adversary[3]. In order to perform the attack
such that it cannot be detected, 𝜌𝑎 has to be smaller than a certain
threshold value,

𝜌𝑎 = | | (I −HM)z𝑎 | | ≤ 𝜁 . (7)

This threshold value, 𝜁 , is a design parameter that has to be specified
by the attacker. The smaller values of 𝜁 make it more challenging
for the BDD to detect the attack. However, the small values of 𝜁
will provide less gain for the attacker, because the attacker faces
more strict constraints to manipulate the measurements. Adver-
saries have to solve an optimization problem to be able to perform
the maximum manipulation on the measurements without being
detected by the BDD. This optimization problem is expressed in
Eq. 8[3].

max
z𝑎

∑
𝑖𝜖𝐾

z𝑎 (𝑖) −
∑
𝑗𝜖𝐿

z𝑎 ( 𝑗)

𝑠 .𝑡 .

{
| | (I −HM)z𝑎 | | ≤ 𝜁
z𝑎 (𝑘) = 0 𝑘 𝜖 {𝑁𝐾},

(8)

where {𝑁𝐾} is the set of measurements that the attacker is not able
to compromise. The utility of the attacker corresponds to values of
z𝑎 that are achieved from Eq. 8. It means that for the higher values
of z𝑎 , the measurements are manipulated more significantly and
the attacker can gain higher utility. Online pricing of the power
depends on the estimated power of the smart meters. Therefore,
the attacker can gain some financial utility through injecting false
data and changing the actual estimations of the measurements. The
utility of the attacker can be written as follows:

ΔP̂𝑖 𝑗 =
(M𝑖 −M𝑗 )𝑇

R𝑖 𝑗
z𝑎 . (9)

2.3 Attack Against Artificial Neural Networks
In Section II B, we assumed that the BDD is a closed- form state
estimator. However, it is possible to use other tools as the BDD. In
this section, we propose the idea to use deep learning (MLP) instead
of a state estimator. As it was mentioned in Sections II A and B, the
attacker injects the false data in a way that cannot be detected by
the BDD. In the case of using MLP as the BDD, the attacker has to
perform its attack in a way that cannot be detected by the MLP. It
means that the attacker needs to solve the optimization problem
expressed in Eq. 8. However, the constraints of that optimization
problem have to be modified with respect to the parameters of the
MLP. In Section II B, it was assumed that the attacker knows H,
in the case that MLP is used as the BDD we will assume that the
attacker knows the parameters of the MLP. In Fig. 1, the structure
of a one-layer MLP is depicted. There are two sets of weights in this
network,𝑤𝑖 𝑗 , which connects the input to the first hidden layer, and

𝑦𝑖 𝑗 that connects the outcome of the hidden layer to the output layer.
There are also two activation functions 𝑓 and 𝑓 1. In this scenario, an
MLP has to be trained with two sets of data, compromised data and
safe data. For each set of data, a label is assigned to train the MLP,
the label 1 is assigned for the compromised measurements, and 0
for safe data. The adversary has to perform its attack somehow that
when the compromised data is tested by theMLP, the output of MLP
will be closer to zero than one. In this paper, we will use an MLP
with two hidden layers and 10000 total samples are used for training
the MLP, half of the samples are compromised measurements and
the other half are safe measurements. We assume that when the
output of MLP is larger than 0.5, the measurement will be classified
as the compromised data, and when it is less than 0.5, it will be
considered as a safe measurement. Therefore, Eq. 8 is expressed as
follows when the BDD is an MLP:

max
z𝑎

∑
𝑖𝜖𝐾

z𝑎 (𝑖) −
∑
𝑗𝜖𝐿

z𝑎 ( 𝑗)

𝑠 .𝑡 .



𝑓 1(𝑦11 𝑓 (𝑧 (1)𝑤11 + ... + 𝑧 (𝑁 )𝑤𝑁 1)
+𝑦21 𝑓 (𝑧 (1)𝑤12 + ... + 𝑧 (𝑁 )𝑤𝑁 2)
+...
+𝑦𝑀1 𝑓 (𝑧 (1)𝑤1𝑁 + ... + 𝑧 (𝑁 )𝑤𝑁𝑀 )) ≤ 0.5
𝑧𝑎 (𝑘) = 0 𝑘 𝜖 {𝑁𝐾},

(10)

where 𝑧 = 𝑧0 + 𝑧𝑎 , 𝑁 is the number of measurements, and𝑀 is the
number of neurons in the hidden layer. This formulation can be
extended to any number of neurons and hidden layers.
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Figure 1: Structure of a MLP with one hidden layer.

2.4 Zero-Sum Game Between Two Players
In a two-person zero-sum game there are two players that each
side tries to increase its gain by decreasing the other side’s gain.
The adversary and the defender can also be considered as two
players of a game. Each player has a set of strategies, which in
our case is defined as the measurements that can be attacked and
defended. Based on the strategy set, for any action taken by the
attacker or defender, a utility value is attributed. In this paper,
S = {𝑠𝑖 𝑗,𝑖=1,...,𝑟 ;𝑗=1,...,𝑐 } is denoted as the game matrix. In the game
matrix, the set of actions and the corresponding utilities which
are taken by each player is shown. Here the utility of the attacker,
𝑈𝑎 , corresponds to Δ ˆ𝑃𝑖 𝑗 and the utility of defender,𝑈𝐷 , is equal to
-Δ ˆ𝑃𝑖 𝑗 . The saddle pint or the pure strategy of this game is defined
as 𝑠𝑖∗ 𝑗∗ , and it exists if and only if,𝑚𝑖𝑛(max

𝑟𝑜𝑤
) of S=𝑚𝑎𝑥 (min

𝑐𝑜𝑙
) of S
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where 𝑟𝑜𝑤 and 𝑐𝑜𝑙 correspond to the rows and columns of the S. In
the games that a pure strategy does not exist, a mixed strategy of
the game has to be calculated. The mixed strategy tells us about the
probability of taking each action by the players[3]. The frequency
of choosing the rows and columns of the game by the defender
and the attacker will converge to the probability distribution of the
defender and attacker respectively. To calculate the mixed strategy
of a zero-sum game, the defender tries to minimize the average
value of the outcome of the game which is defined as below:

𝑚𝑖𝑛 𝐶 (𝑞,𝑢) =
𝑟∑
𝑖=1

𝑐∑
𝑗=1

𝑞
′
𝑖𝑠𝑖 𝑗𝑢 𝑗 , (11)

where 𝑞 and 𝑢 are the probability distributions of the strategies
taken by the defender and attacker respectively. The defender’s
mixed strategy is calculated via solving the following optimization
problem which is a linear programming problem:

max
𝑞̃

𝑞
′
1𝑟

𝑠 .𝑡 .

{
𝑆
′
𝑞 ≤ 1𝑐

𝑞 ≥ 0,

(12)

where 𝑞 =
𝑞

ℎ1 (𝑞)
, and ℎ1 (𝑞) is defined as follows:

ℎ1 (𝑞) = max
𝑈

𝑞
′
𝑆 𝑢 ≥ 𝑞

′
𝑆 𝑢 ∀ 𝑢 𝑖𝑛 𝑈 . (13)

In Eq. 13,𝑈 is defined as the probability distribution of the strategies
chosen by the attacker and is defined as below:

𝑈 =

𝑢 ∈ 𝑅𝑐 : 𝑢 ≥ 0,
𝑐∑
𝑗=1

𝑢 𝑗 = 1
 (14)

In order to calculate the mixed strategy of the attacker another
linear programming problem has to be solved which is expressed
as:

min
𝑢̃

𝑢̃
′
1𝑐

𝑠 .𝑡 .{
𝑆𝑢̃ ≥ 1𝑟
𝑞𝑢 ≥ 0,

(15)

where 𝑢̃ =
𝑢

ℎ2 (𝑢)
, 𝑢

′
𝑖
is the transpose of 𝑢, and ℎ2 (𝑢) is defined as

follows:
ℎ2 (𝑢) = min

𝑄
𝑞
′
𝑆 𝑢 ≤ 𝑞

′
𝑆 𝑢 ∀ 𝑞 𝑖𝑛 𝑄. (16)

In Eq. 16, 𝑄 is defined as the probability distribution of the
strategies chosen by the defender and is expressed as below:

𝑄 =

{
𝑞 ∈ 𝑅𝑟 : 𝑞 ≥ 0,

𝑟∑
𝑖=1

𝑞𝑖 = 1

}
(17)

3 PERFORMANCE ANALYSIS
In this paper we use MATPOWER 5.1 [18] to simulate a PJM-5 bus
test system which gives us H, and x. To have a fair comparison
between the MLP and the state estimator, the threshold value of the
state estimator BDD, 𝜁 , has to be chosen somehow that the false
alarm rate of theMLP and the state estimator be equal. In Table 1 the
𝜁 thresholds of the state estimator are shown when the attacker can

perform its attack on one or two meters at the same time depending
on which meters are being defended and which meters are being
attacked in the zero-sum game. In the PJM-5 testbed, there are total
of 11 smart meters. However, as it was mentioned in Section II we
assume that the adversary is not able to perform an attack on all of
them. Adversary performs its attack on the meters that are more

Table 1: Threshold values of state estimator BDD in mega
Watts(MW).

Compromised meter 𝜁

𝑧1 8.54
𝑧4 7.5
𝑧5 8.32
𝑧10 8.3
𝑧1𝑧4 10.89
𝑧1𝑧5 12.65
𝑧1𝑧10 12.59
𝑧4𝑧5 10.48
𝑧4𝑧10 10.33
𝑧5𝑧10 9.48

likely to cause congestion on transmission lines. These meters are
identified through DC optimal power flow (DCOPF) simulation and
are shown in Table I. In Tables II and III, the utility of the attacker,
in the zero-sum game between the attacker and the defender is
shown. As it was mentioned in Section II D, in the zero-sum game
the utility of the attacker, 𝑈𝑎 , corresponds to Δ ˆ𝑃𝑖 𝑗 and the utility
of defender,𝑈𝐷 , is equal to -Δ ˆ𝑃𝑖 𝑗 . The columns of Tables II and III
correspond to the meters that are attacked, and the rows correspond
to the meters that are defended.

As it can be seen in Tables II and III, the utility of the attacker
when the defender is using the MLP as the BDD is much lower than
the case that the defender uses state estimator. The average utility
of the attacker in the zero-sum game when the defender uses MLP
is 0.87 MW and when it uses the state estimator, it is equal to 4.75
MW, which indicates that the MLP is a much better BDD for the
defender since the attacker can gain much less utility.

Table 2: Utility of Attacker when BDD is state estima-
tor(MW)

DefAtt z1z4 z1z5 z1z10 z4z5 z4z10 z5z10
z1z4 0 6.03 5.83 6.03 5.83 11.82
z1z5 2.79 0 5.83 2.79 8.34 5.83
z1z10 2.79 6.03 0 8.6 2.79 6.03
z4z5 4.45 4.45 10.18 0 5.83 5.83
z4z10 4.45 10.44 4.45 6.03 0 6.03
z5z10 7.71 4.45 4.45 2.79 2.79 0

3.1 Adversary-aware VS Adversary-unaware
classification

In adversarial attacks machine learning, the adversary tries to gain
the maximum benefit through fooling the classifier. In this area,
there exists a game or competition between the adversary and the
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Table 3: Utility of Attacker when BDD is MLP(MW)

DefAtt z1z4 z1z5 z1z10 z4z5 z4z10 z5z10
z1z4 0 0.77 1.5 0.77 1.5 2.33
z1z5 0.86 0 1.5 0.86 1.62 1.5
z1z10 0.86 0.77 0 1.83 0.86 0.77
z4z5 0.28 0.28 1.28 0 1.5 1.5
z4z10 0.28 0.78 0.28 0.77 0 0.77
z5z10 0.77 0.28 0.28 0.86 0.86 0

Aware Unaware

0

0.2

0.4

0.6

0.8

1

Figure 2: Detection probability of MLP.
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Figure 3: Detection probability of state estimator.

classifier. Twomain scenarios are considered in this situation. In the
first scenario, it is assumed that the adversary is not aware of the
presence of the BDD or the classifier, while in the second scenario it
is assumed that the adversary is aware of that. The adversary-aware
scenario requires the adversary to optimize its attack with respect
to the parameters of the classifier, and the adversary-unaware re-
quires the attacker to optimize its attack regardless of the classifier
parameters[1]. In this part, we first assume that the classifier is an
MLP and then we assume that the classifier or the BDD is the state
estimator. For both of the cases, the adversary-aware and unaware
scenarios are implemented and the normalized utility of the classi-
fiers are shown in Figs. 2 & 3. The utility of the classifier is defined
as the number of the compromised meters that it can detect.

As it can be seen in Figs. 2 & 3, when the defender is using
the MLP as the BDD, in the adversary-unaware case the utility
or accuracy of the attack detection is higher compared with the
adversary-aware case. However, when the defender is using the
state estimator as the BDD, the opposite behavior is observed. The
reason for this difference in the behavior is that when the BDD is
MLP and the attacker optimizes its attacks with respect to the state
estimator, the magnitude of the attack will be much higher which

makes it very easy for the MLP to detect the attack. On the other
hand, when the BDD is using the state estimator, and the attacker
is optimizing its attack against the MLP the magnitude of the attack
will be very low and the state estimator can’t detect the attack.
That is why in the adversary-unaware scenario, the utility of the
classifier when MLP is being used is much higher than the case that
the state estimator is being used. However, in the adversary-aware
scenario, the utility of the classifier is almost equal in both cases,
because the threshold value, 𝜁 , of the state estimator is chosen such
that both the classifiers have the same value of false alarm rate.
3.2 Mixed Strategy of the Game
As it can be seen in Tables II and III, this game does not have a
pure strategy because𝑚𝑖𝑛(max)

𝑟𝑜𝑤
of S ≠𝑚𝑎𝑥 (min)

𝑐𝑜𝑙

of S. As it can

be seen in Table II, the𝑚𝑖𝑛(max)
𝑟𝑜𝑤

= 7.71 and𝑚𝑎𝑥 (min)
𝑐𝑜𝑙

= 0, also

in Table III 𝑚𝑖𝑛(max)
𝑟𝑜𝑤

= 0.76 and 𝑚𝑎𝑥 (min)
𝑐𝑜𝑙

= 0. Since none of

these two scenarios have a pure strategy, the mixed strategy of
these two games have to be calculated. Based on the Tables II and
III, and using Eq. 12, the following optimization problems have to
be solved to calculate the defenders’ mixed strategies for the state
estimator and the MLP, respectively. By solving Eq. 18, 𝑞 can be
calculated for the defender when the BDD of the defender is the
state estimator. The mixed strategy of the defender when the state
estimator is being used as the BDD can be calculated using Eq. 19.
max
𝑞̃

𝑞
′
1𝑟

𝑠 .𝑡 .



2.79𝑞2 + 2.79𝑞3 + 4.45𝑞4 + 4.45𝑞5 + 7.71𝑞6 ≤ 1
6.03𝑞1 + 6.03𝑞3 + 4.45𝑞4 + 10.44𝑞5 + 4.45𝑞6 ≤ 1
5.83𝑞1 + 5.83𝑞2 + 10.18𝑞4 + 4.45𝑞5 + 4.45𝑞6 ≤ 1
6.03𝑞1 + 2.79𝑞2 + 8.6𝑞3 + 6.03𝑞5 + 2.79𝑞6 ≤ 1
5.83𝑞1 + 8.34𝑞2 + 2.79𝑞3 + 5.83𝑞4 + 2.79𝑞6 ≤ 1
11.82𝑞1 + 5.83𝑞2 + 6.03𝑞3 + 5.83𝑞4 + 6.03𝑞5 ≤ 1
𝑞 ≥ 0.

(18)

𝑞 = 𝑞 ℎ1 (𝑞) = 𝑞(𝑞1𝑟 )−1 (19)
The mixed strategy of the defender when MLP is being used as
the BDD can be calculated using Eq. 20. Upon solving Eq. 20, the
mixed strategy of the defender when MLP is being used as the
BDD can be calculated using Eq. 19. Figs. 4 & 5 demonstrate the
mixed strategies of these two games. As it can be seen in Fig. 4, the
attacker performs 57% of its attacks on 𝑧4𝑧5, and this transmission
line is defended by the defender in 21% of the times. To find the
mixed strategy of the attacker, Eq. 15 has to be solved using the
values in Tables II and III respectively.

max
𝑞̃

𝑞
′
1𝑟

𝑠 .𝑡 .



0.86𝑞2 + 0.86𝑞3 + 0.28𝑞4 + 0.28𝑞5 + 0.77𝑞6 ≤ 1
0.77𝑞1 + 0.77𝑞3 + 0.28𝑞4 + 0.78𝑞5 + 0.28𝑞6 ≤ 1
1.5𝑞1 + 1.5𝑞2 + 1.28𝑞4 + 0.28𝑞5 + 0.28𝑞6 ≤ 1
0.77𝑞1 + 0.86𝑞2 + 1.83𝑞3 + 0.77𝑞5 + 0.86𝑞6 ≤ 1
1.5𝑞1 + 1.62𝑞2 + 0.86𝑞3 + 1.5𝑞4 + 0.86𝑞6 ≤ 1
2.33𝑞1 + 1.5𝑞2 + 0.77𝑞3 + 1.5𝑞4 + 0.77𝑞5 ≤ 1
𝑞 ≥ 0.

(20)
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 Attacker Mixed Strategy

z1z4(0.48)

z5z10(0.22)

z4z10(0.16)

z4z5(0.14)

 Defender Mixed Strategy

z1z5(0.37)

z5z10(0.27)

z4z10(0.21)

z1z10(0.15)

Figure 4: Mixed Strategy of Table II.

 Attacker Mixed Strategy

z4z5(0.57)
z5z10(0.26)

z4z10(0.17)

 Defender Mixed Strategy

z4z5(0.21)

z5z10(0.38)

z4z10(0.41)

Figure 5: Mixed Strategy of Table III.

The main intuition that can be observed from Figs. 4 & 5 is
that the probability of the attack is higher on the measurements
that are less likely to be protected by the defender. For each set
of measurement,s there is a corresponding value in 𝐺 . The higher
values of 𝐺 correspond to the measurements that have a greater
effect on ΔP̂𝑖 𝑗 . The adversary finds the measurements with greater
value in 𝐺 and less probability of detection to compromise. The
other observation from Figs. 4 & 5 is that, while the state estimator
is being used as the BDD there is a larger number of measurements
that can be compromised. As it can be seen, while the BDD is an
MLP there are 3 sets of measurements that have a high probability
to be compromised. However, as we use the state estimator as
the BDD there are 4 sets of measurements which are likely to be
compromised. This intuition means that using the MLP as the BDD
not only decreases the gain that the adversary can achieve but also
limits the set of possible actions that the adversary can choose to
perform attacks.

This behavior can be explained using Tables II & III. As it can
be seen in Table II, in the scenarios that the adversary can com-
promise two measurements at the same without being defended
it always gains more utility. As an example, while the adversary
compromises 𝑧1𝑧4 and the defender protects 𝑧5𝑧10 the utility of the
attacker is equal to 7.71MW. This behavior can be observed in other
columns of Table II as well. However, this behavior cannot be seen
in Table III. In the scenario where the adversary attacks 𝑧1𝑧4 and
the defender protects 𝑧5𝑧10, the utility that the adversary gains are
equal to 0.77MW which is not greater than all of the utilities that
the adversary can gain in the first column of Table I. This means
that while we use the MLP as the BDD there is no guarantee for the
adversary to gain higher utilities if it can successfully compromise
two meters simultaneously.

4 CONCLUSION
In this paper, an approach has been proposed which for the first
time combines the MLPs with the game theory to study the false
data injection attacks in the smart grids. This paper proposes to

use the MLPs instead of conventional state estimators as the BDD
of the defender in the game-theoretic formulation of the smart grid
security. We have shown that if the MLPs are used then the adver-
saries can gain much less utility than when the state estimators are
used. We have also studied the adversary informed and adversary
uninformed scenarios in the game-theoretic formulation of this
problem, and we have shown that depending on the type of the
defender’s BDD in each scenario different behavior can be observed.
We also showed that this game does not have a pure strategy, and
the mixed strategy has been calculated.
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