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Abstract—In this position paper, the authors argue the need
for a novel framework that provides flexibility, autonomy and
optimizes the use of scarce resources to ensure reliable com-
munication during next-generation space missions. To this end,
the authors present the shortcomings of existing space archi-
tectures and the challenges in realizing adaptive autonomous
space-networking. In this regard, the authors aim to jointly
exploit the immense capabilities of deep reinforcement learning
(DRL) and cross-layer optimization by proposing an artificial
intelligence-based cognitive cross-layer decision engine to bol-
ster next-generation space missions. The presented software-
defined cognitive cross-layer decision engine is designed for the
resource-constrained Internet-of-Space-Things. The framework
is designed to be flexible to accommodate varying (with time
and location) requirements of multiple space missions such as
reliability, throughput, delay, energy-efficiency among others. In
this work, the authors present the formulation of the cross-
layer optimization for multiple mission objectives that forms the
basis of the presented framework. The cross-layer optimization
problem is then modeled as a Markov Decision Process to be
solved using deep reinforcement learning (DRL). Subsequently,
the authors elucidate the DRL model and concisely explain the
deep neural network architecture to perform the DRL. This
position paper concludes by providing the different phases of
the evaluation plan for the proposed cognitive framework.

Index Terms—Artificial intelligence, deep reinforcement learn-
ing, cross-layer optimization, cognitive decision engine, internet-
of-space-things, software defined radios.

I. INTRODUCTION

As NASA enters a new era of space exploration, where com-

munication links shift from point-to-point communications

to networked topologies involving relay satellites, spacecraft

swarm, nanosatellites (CubeSats), multiple robotic vehicles

communicating with each other and with ground terminals,

certain communication bottlenecks emerge. These include

spectrum congestion, low rate links, energy-unaware commu-

nication at the physical layer, unreliable resource-negligent

networking among others. Conventional legacy systems that

adopt fixed rate communications, layer-specific approaches,

static routing, etc. cannot address these communication chal-

lenges. There have been significant layer-specific efforts to

enhance space communication such as variable rate com-

munication using adaptive modulation and coding [1], [2]

at physical layer, variants of traditional routing protocols

for space communications at network layer. However, these

approaches are specific to the layers in the protocol stack.

The benefit gained by sharing information between layers –

cross-layer approach – has been under study for terrestrial and

space wireless communication systems recently but are not yet

in practice for space communication [3]–[14].

In recent years several small (micro-, nano-/CubeSats, and

pico-) satellites, TETwalkers, and Tracking and Data Relay

Satellites (TDRS) have been deployed, which communicate

with national and international ground stations for research

missions, planetary surface exploration, among others. Sev-

eral other Internet-of-Space-Things (IoSTs) such as Marsbees,

Mars Helicopter, among others are envisioned to be deployed

in space especially for Mars surface exploration. With the

advent of these communicating entities, communication can

extend from long point-to-point links to hop-by-hop commu-

nication links by means of wireless networking as in Fig. 1.

The different types of wireless links that exist in space com-

munication are intra-vehicle, inter-vehicle, planetary surface-

to-surface, planetary surface-to-spacecraft and space-to-earth.

All these wireless links except the intra-vehicle can range from

several kilometers to several hundreds or thousands of kilome-

ters. A point-to-point link for such long-range communication

implies higher transmission power to attain reliable com-

munication. A hop-by-hop distributed networking approach

implies significant onboard power savings and reliable com-
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munication considering the resource-constrained architecture

of these IoSTs. Therefore, in this work, we aim to discuss

the challenges of existing space communication architectures

and argue in favor of the immense performance benefits that

can be attained by designing an artificial intelligence (AI)-

based cognitive cross-layer decision engine. Accordingly, we

describe the need for such a cognitive engine, provide the

initial design of the framework and present implementation

plan to drive this position paper forward.

The paper is organized as follows. Section II discusses

the existing space communication architecture, challenges and

opportunities. Section III will detail the framework of the

proposed AI-based cross-layer decision engine. Section IV

discusses the implementation plan. Finally, we summarize our

conclusions in Section V.

II. RELATED WORKS AND MOTIVATION

A. Existing Architecture.

Traditional satellite communications have been point-to-

point and bent-pipe in nature. Such a bent-pipe approach is

typical of Low Earth Orbit (LEO) satellites which are designed

to communicate directly with the ground terminal or via a

TDRS [15]. The inter-satellite distance in LEO networks can

range from ten to several thousands of kilometers resulting

in propagation delays in the order of milliseconds that is

significantly higher than terrestrial networks [16]. The authors

of [17] overcome this long distance link problem by satellite-

terrestrial segment networking which integrates satellites with

inter-satellite link (ISL) capability and ground terminals to

form nodes of a large ad hoc network. GAMANET brings in

the flexibility of software-defined radios (SDRs) to realize this

space-to-earth ad hoc network. Another non-agile feature of

traditional satellite networks is the slow configuration whereby

the ground terminals configure the satellites when it passes di-

rectly over the terminal. This results in an inflexible approach

which involves static routing, link allocation and scheduling

that lack the intended agility to support the varying fading,

traffic effects and quality of service (QoS) requirements.

Consequently, current satellite communication cannot sustain

dynamic fine-grained QoS guarantee.

With the advent of small satellite systems in the nano,

pico and micro range of satellites, the notion of space-

based networking is becoming increasingly tangible. Few of

the small satellite missions are ANTS (NASA’s Autonomous

NanoTechnology Swarm), GRACE (joint venture by NASA

and Deutsche Forschungsanstalt fr Luftund Raumfahrt in Ger-

many), EDSN (NASA’s Edison Demonstration of SmallSat

Network), PROBA-3 (Small satellite demonstration mission by

European Space Agency), QB-50 etc. Small satellite networks

allow for higher reconfigurability, unified mission objective,

scalability at a reduced cost with respect to larger satellites.

The formation flying aspects introduce swarm, cluster, trailing

and constellation formations. The network topology of satel-

lites at a particular time instant is referred to as the topology

slice. The topology slice varies with time as satellites come

in and go out of range in a satellite network. The varying

topology, link quality, frequency availability, mission-specific

QoS requirements pose significant challenges to the inter-

satellite communication in small satellite networks as well as

large formations. Satellite resources such as storage, power

and processing are limited and expensive. These constraints

are further restricted in the case of small satellite systems.

Traditional satellite systems possess layered architecture

typical of the Open Systems Interconnection (OSI) reference

model. Such a modular protocol stack approach independently

optimizes parameters in the respective layers leading to redun-

dancies and inefficiencies. The QoS requirements are serviced

at the upper layers although they are affected by the lower

level protocols. Lack of scalability and adaptability with the

fluctuating network dynamics can result in significant perfor-

mance inefficiencies. Inefficient allocation of radio resources,

for instance, larger number of time slots to a satellite that is

currently experiencing fading effects lead to higher error rates.

This inefficiency stems from lack of information exchange

between link and physical layer resulting in wasteful resource

allocation. Several strategies [18]–[20] have been proposed to

adaptively vary the modulation and coding scheme for DVB-

S2 links with varying channel conditions such that higher order

modulation schemes are chosen at good channel conditions

and lower order modulations are chosen when channel quality

is poor. Since the physical layer does not consider the end-to-

end data rate requirement for the current application being

serviced, this could lead to excessive delays for high data

rate applications. Such inefficiencies arising from lack of

information exchange between the layers of protocol stack can

be better addressed with a unified cross-layer approach.

B. Cross-layer approach

A cross-layer approach is imperative to address the ineffi-

ciencies arising from the layered architecture and the unique

challenges in realizing space networking. Ensuring optimal

radio resource allocation, medium access and routing strategies

while satisfying QoS requirements involve interaction with the

disparate layers of the protocol stack. The cross-layer design

for terrestrial ad hoc networks have been studied extensively

[3]–[9] but its application to space networks is still at its

infancy with very few notable works in this direction [10]–

[14].

The authors of [3] propose a cross-layer communication

framework to ensure QoS for heterogeneous applications in

wireless multimedia sensor networks. The work in [5] illus-

trates the use of a unified optimization framework as applied to

opportunistic scheduling in single-hop cellular networks and

joint congestion-control and scheduling problem in multihop

wireless networks. The authors of [6] analyzed the effect of

imperfect scheduling on cross-layer congestion control for

wireless networks. Cross-layer optimized protocols have been

playing a vital role in maximizing the performance of various

ad hoc networks and to mitigate the unique challenges of

modern communication networks. Due to the critical nature of

data flowing through tactical ad hoc networks, a deadline based

cross-layer routing protocol was proposed in [7] to maximize



the effective throughput of the network. The effectiveness of

such an approach was demonstrated by evaluation on SDR-

based cross-layer testbed [7], [8]. Similarly, an energy-aware

routing protocol was proposed in [9] to bolster emergency ad

hoc public safety network and was shown to achieve twice

the network lifetime of traditional shortest path approaches.

Several of these optimization objectives can be applicable to

space mission but usually involves much more adaptable pa-

rameters due to the heterogeneous nature of the IoSTs. Hence,

demanding the need to employ deep learning solution to ensure

the feasibility of next-generation cross-layer architectures for

space exploration.

There has been some effort to apply cross-layer techniques

for satellite communication. The authors of [13] proposed

a cross-layer bandwidth allocation scheme which involves

physical and link layers. The scheme adopts a master-slave

model for satellite network whereby the master allocates

bandwidth to the slaves based on their bandwidth requests

and local channel conditions. The cross-layer information from

physical layer and link layer is used for dynamic uplink packet

scheduling based on channel conditions for unicast DVB-S2

services in [11]. A MODCOD adaptation at the physical layer

based on transport layer goodput performance is proposed in

[14]. The authors assume a GEO bent-pipe model forming

a relay link between two TCP client/server-to-earth stations

where the transmission mode adaptation is performed by

the transmitting earth station based on transport layer ACKs

from the server at the receiving end. A dynamic resource

allocation scheme for DVB-RCS satellite networks based on

cross-layer interaction between the transport and link layer

is proposed in [10]. The authors consider a GEO stationary

satellite receiving control signaling from a network control

center (NCC) in the ground terminal and serving multiple

user terminals based on the control parameters as dictated by

the NCC. Although these works apply cross-layer technique

for satellite communication, their scalability and adaptability

as applied to a satellite constellation or spacecraft swarm

may be intractable as the network grows. Primarily because

the decision making ability are not distributed to the network

entities (satellites/spacecrafts) and relies on a control entity

located either in the ground or chosen among the satellite

formation (swarm/cluster/constellation) which dictates the ac-

tions to be adopted by each satellite in the formation. Extend-

ing such centralized approaches to large satellite formations

are impractical and uneconomical considering the resource-

constrained expensive space missions. A potential cross-layer

solution for next-generation space-missions must, therefore,

be autonomous, scalable (decentralized), and reconfigurable

based on changing mission objectives. Maintaining such dis-

tributed cross-layer framework would demand handling large

number of operational parameters across multiple layers of

the protocol stack. To handle this parametric explosion, we

exploit the powerful artificial intelligence (AI) tool called Deep

Learning. Therefore, in this work, we present a novel commu-

nications framework that employs cross-layer technology and

deep learning to provide an autonomous and adaptive solution
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Fig. 2. Cognitive Cross-layer Decision Framework

to enable next-generation space missions.

III. COGNITIVE CROSS-LAYER DECISION FRAMEWORK

In this section, we present the cognitive cross-layer deci-

sion framework shown in Fig. 2 designed to enable efficient

communication and networking ability for space exploration.

Let’s assume the space ad hoc network model with multiple

IoSTs and/or terrestrial terminals forming the nodes of the

network. The end-to-end QoS metrics are derived from the

upper layers (such as transport layer) of the protocol stack.

The routing decisions are derived from the network layer and

the transmission resources are assigned and configured at the

physical layer. In the proposed framework, the cross-layer

controller will gather multiple parameters such as transmission

power, bit rate, frequency band, residual battery energy, packet

destination, queue backlog, QoS requirements among others

from multiple layers of the protocol stack. The gathered

parameters are then made available to the decision engine to

make optimal decisions.

In this work, we consider two different scenarios to present

a flexible framework that can accommodate multiple mis-

sion objectives. For instance, let us suppose the mission

objectives are (i) QoS-aware energy efficient networking and

(ii) resource-aware reliable networking. With respect to each

mission goal, the framework derives multiple layer-specific

objectives that will eventually be jointly attained by the cross-

layer optimization.

Physical Layer Formulation. From the perspective of

physical layer, the objective is to perform optimum radio

resource allocation in response to the varying link dynamics

and spectrum occupancy. Let us consider N number of nodes

in the network with F number of available frequency bands to

communicate with each other. The set of available nodes can

be denoted as N . The maximum onboard transmission power

can be denoted by P and let Pn
f represent the transmission

power of node n on the frequency band f . Each user performs

spectrum sensing on the allocated communication band and

returns the interference plus noise metric that is piggy-backed

to control signaling to immediate neighbors such that they can

use the obtained link metrics in optimization. The interference

plus noise metric of node n on the F frequency bands is

denoted by the vector in = [in1 , i
n
2 , · · · , i

n
F ]. The energy

efficiency (ηnmf ) of a transmission from the node n to m can be

defined as the number of bits successfully transmitted per Joule



of transmission energy in frequency band f at a transmission

bit rate of rn. Now, the score metric can be derived as,

score1 = ηnmf =

(
1− enmf

)
rn

Pn
f

, (1)

where enmf (function of imf ) is the bit error rate (BER) of

link between n and m at frequency band f . Now, the first

optimization objective can be derived as,

Objective1: Maximize score1

Find:
{
f, rn, Pn

f

}

Subject to: rn ≥ rQoS , Pn
f < P, ∀n ∈ N , ∀f (2)

enmf ≤ eQoS ∀n,m ∈ N , ∀f (3)

Here, the constraints (2) and (3) guarantee the acceptable

QoS level of the application being serviced by ensuring; the

transmission bit rate is not less than the minimum, rQoS

as requested by the service, and BER is below the accept-

able threshold eQoS . The constraint Pn
f < P ensures the

transmission power stays within the bound. The transmission

bit rate is affected by the modulation and coding scheme

(MODCOD) chosen. Hence, choosing a certain bit rate selects

the appropriate MODCOD scheme.
Network Layer Formulation. The two different architec-

tures considered for instance are the small satellite constella-

tion and swarm. In the first instance, the space ad hoc network

involves small satellite constellation communicating with few

ground stations. In the second case, we consider spacebot

swarms such as Marsbees or Mars Helicopters communicating

with each other and a rover that acts as the data aggregation

center. In both cases, the entities of the ad hoc network

will be referred to as nodes with the destinations (ground

station/rover) acting as the data sink (S). We represent this

space network as a directed connectivity graph G(N , E) where

[L(n,m)] ∈ E ∀m ∈ Nn is the set of wireless links in the

network. Here, Nn is the set of potential next-hops of n. The

distance between any nodes n and m is given as dnm and their

queue backlogs are represented as qn, and qm. The residual

and initial battery energies of node m can be denoted as bmr
and bmi .

To achieve the mission goal A: QoS aware energy effi-

cient networking, the second objective must be formulated to

maximize network lifetime in support of extended duration

space missions. Network lifetime can be defined as the time

until which the first node in the network exhausts its battery

power. The networking strategy adopted in this work follows

a distributed routing whereby each node (n) with a packet to

transmit to a destination S will find the optimal next-hop by

considering the forward progress, differential queue backlog

∆qnm = qn− qm, and its residual battery energy. Thus, score

metric to achieve mission goal A is

scoreA2 =

(
max [∆qnm, υ]

qn

)(
dnS − dmS

dnS

)(
bmr
bmi

)
, (4)

where υ is a very small positive constant value to avoid

negative value in the first term of equation (4). The scoreA2 is

computed only when the queue backlog qn is non-zero, i.e.,

when the node has outbound packets in the buffer. Similarly, to

achieve mission goal B: resource-aware reliable networking,

the second objective must be formulated to maximize reliabil-

ity and throughput in a resource-aware manner. To this end,

we introduce a distributed route reliability metric (ιmS) of the

potential next-hop m to S as in [21] that commensurates the

probability of successfully delivering a packet from n to S on

the first attempt and the queue backlog of each session. The

route reliability metric of a node signifies the reliability of

the route to a destination through a given next hop. The route

reliability metric varies with topology and link reliability and

hence is time variant. The score to achieve goal B can be

derived as,

scoreB2 = ιmS

(
dnS − dmS

dnS

)
. (5)

The second optimization objective can be obtained as,

Objective2: Maximize score
{A,B}
2

Find: m

Subject to: Mission-specific constraints. (6)

Here, score
{A,B}
2 implies the mission specific score2 metric

which could be scoreA2 or scoreB2 . Next, we look at how the

physical layer and network layer scores will be reformulated

to obtain a unified cross-layer score.

Cross-layer optimization The proposed framework em-

ploys a cross-layer controller to interact with the multiple lay-

ers of the protocol stack. The optimization objectives derived

above will be jointly optimized to achieve the dictated mission

goal. Therefore, the weighted joint score can be expressed as,

scorex = w1score1 + w2score
{A,B}
2 (7)

where the weights are user-defined as per the mission require-

ments such that w1 + w2 = 1, ∀ w1, w2 ∈ (0, 1) . Now, the

joint optimization objective can be expressed as,

Objectivex: Maximize scorex

subject to: Combined QoS and resource constraints

The parametric space will grow as the node’s potential next-

hop neighbors and their tunable parameters as per the mission

objective across the protocol stack layers increase. This is the

motivation behind using Deep Reinforcement Learning (DRL)

as it combines the advantages of reinforcement learning (RL)

with the powerful aspect of Deep Neural Network (DNN).

A. Deep Learning

Deep Learning is a subject of growing interest to researchers

from various domains. The applicability of machine learning

in wireless communication has been studied in [22], [23].

However, deep learning in conjunction with the cross-layer

approach for space communication has not been substantially

explored. In this work, we show a succinct presentation of

how these two technologies can unite to benefit the space

networking aspect for next-generation space missions. Further,



autonomy is a much-needed aspect for next-generation space

missions owing to the intelligent and decentralized operation

resulting from it. In this regard, the cross-layer optimization

problem discussed above can be formulated as a Markov

Decision Process (MDP) and solved using DRL. MDP is

modeled as a set of states and actions such that the system is

rewarded for taking a certain action. The objective of a MDP

is to find the optimal policy that will maximize the cumulative

discounted reward

Γ =

∞∑

i=0

γiτt+i (8)

where γ ∈ [0, 1] is the discount factor and τt+i is the

instantaneous reward. The state represents an abstraction of

the environment the agent makes decisions on. From the cross-

layer perspective, state represents multiple parameters derived

from the various layers of the protocol stack. Consequently,

the state of the node at time instant t can be represented as

st = (et, rt, ft,Pt, it,qt,dt,brt,bit,ηt, ιt,Nt) (9)

where,

et = [enmt ]
F×|Nn| , it =

[
imf

]F×|Nn|
,ηt =

[
ηnmf

]F×|Nn|

(10)

States in equation (10) represent the BER, interference mea-

sure and energy efficiency of the potential next-hops in the

available frequency bands respectively.

rt = [0, 0, · · · , rn, 0, · · · , 0]1×F
, (11)

Pt =
[
0, 0, · · · , Pn

f , 0, · · · , 0
]1×F

. (12)

Here, rt and Pt denote transmission bit rate and power of the

node and has zeros everywhere except the occupied channel

index.

qt = [qn, qm]
1×|Nn|+1

,dt =
[
dnS , dmS

]1×|Nn|+1
, (13)

brt = [bnr , b
m
r ]

1×|Nn|+1
,bit = [bni , b

m
i ]

1×|Nn|+1
, (14)

while states in equation (13) signify the queue backlog and

proximity to S of potential next-hops. The states in equation

(14) denote the residual and initial battery energies of the

potential next-hops respectively.

ft = [f ]
1×F

,Nt = [m]
1×|Nn| , ιt =

[
ιmS

]1×|Nn|
(15)

Finally, states in equation (15) represent the available fre-

quency bands, potential next-hops, and distributed route reli-

ability metrics of potential next-hops respectively. The action

at time step t can be denoted as at =
(
rn, fn, Pn

f ,m
)

that

decides the optimum transmission parameters and next-hop.

We adopt the model-free approach to learn the optimal policy.

The MDP policy maps state to action as at = π (st). Let

us denote the total number of possible transmission bit rates

as per the MODCOD options as R and available discrete

transmission power levels as T . Now, the total number of

possible actions are A = R×T×F×|Nn|. The agent attempts

to maximize the reward Γ. Since the goal of the cross-layer

optimization is to maximize the cumulative score scorex, we

will formulate the reward as

τt =

{
scorex if constraints are satisfied,

0 otherwise.
(16)

Now, the Q-function of MDP can be computed as,

Q (st, at)← Q (st, at)+ (17)

λ

[
τt+1 + γmax

at+1

Q (st+1, at+1)−Q (st, at)

]

where λ ∈ (0, 1) is the learning rate. The optimal policy is

π∗ (st) = argmax
a
Q (s, a) (18)

The DNN being used to solve the DRL cross-layer problem

posed above is referred to as the Deep Q-Network (DQN). The

proposed DQN will adopt the convolutional neural network

(CNN) to extract the useful features from the large state-

space. The input state-space will be reformulated as an image

tensor Λ (st) to fully exploit the CNN. The DQN will comprise

three convolutional layers, a max-pooling layer, and two fully-

connected layers with sigmoid activation functions as in Fig.

3.

Another design challenge we foresee, is the instability of

traditional RL when a non-linear approximator such as a neural

network is used to represent the Q-function. To overcome this,

we adopt the experience replay and target network to improve

Q-network stability. During the training process, the DQN

(Q (Λ (s) , a, χ)) with parameters χ maps the input observed

states to actions. During each mapping, the DQN generates

a history tuple consisting of state Λ (st), action at, next state

st+1, and reward τt+1. The history tuple is stored into a replay

memory of size M . The target network Q̃ with parameters χ̃

is copied from the DQN every K steps. At each time step, a

minibatch of size Mmini is sampled from the replay memory.

For each experience tuple sampled from the replay memory,

the loss is calculated with respect to target Q̃ value ξt as,

L (χ) = E [ξt −Q (Λ (st) , at, χt)] (19)

ξt =




τt+1 if at meets constraints,

τt+1 + γmax
at+1

Q (Λ (st+1) , at+1, χ̃) otherwise.

(20)

Batch-normalization will be adopted to accelerate the training

process.

IV. EVALUATION PLAN

The proposed framework will employ the agility of SDRs

to realize the envisioned outcomes. First, the framework

in itself will be extensively simulated/emulated in MAT-

LAB/GNURadio to establish proof-of-concept. Subsequently,

the framework will be implemented in C++/Python for ac-

tual testing at the ANDRO’ Marconi-Rosenblatt Applied AI

Research Laboratory fitted with various SDRs such as the

Universal Serial Radio Peripheral N-series, X-Series, and the
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Zedboard SDR (Fig. 4) among others [8]. The goal is to

leverage the heterogeneity of available SDRs to prove its

seamless integration on disparate SDR platforms intended for

near-future space exploration.

The final phase of testing will potentially employ a

software-defined satellite constellation to operate as an ad

hoc space network. To demonstrate the resource allocation

and adaptive space networking, we will run a test script

to automatically attenuate, virtually modify other available

resources on the nodes. The testing script will involve multiple

test cases to demonstrate the cognitive ability of the framework

that runs on each node in a distributed fashion.

V. CONCLUSION

This position paper puts forth the vision to develop an AI-

based cognitive cross-layer decision engine to enhance the

existing space communication architecture. Accordingly, the

need to unify a cross-layer approach with deep learning has

been motivated by discussing the shortcomings of the state-of-

the-art and requirements of next-generation space exploration.

To this end, a multi-objective cross-layer optimization problem

was framed and modeled as an MDP. Subsequently, it has been

shown how DRL is chosen as the cognitive entity to overcome

the large state-space associated with the cross-layer opti-

mization. Keeping in mind the upcoming resource-constrained

IoSTs, the proposed software-defined cognitive framework is

aimed to provide the required autonomy and reconfigurability

to allow seamless future upgrades and accommodate space

missions with multiple/varying mission goals.
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