
Artificial Neural Network based Automatic

Modulation Classification over a Software Defined

Radio Testbed
Jithin Jagannath†, Nicholas Polosky †, Daniel O’Connor †, Lakshmi N. Theagarajan‡, Brendan Sheaffer †,

Svetlana Foulke†, Pramod K. Varshney‡

†ANDRO Advanced Applied Technology, ANDRO Computational Solutions, LLC, Rome NY,

{jjagannath, npolosky, doconnor, bsheaffer, sfoulke}@androcs.com
‡Department of EECS, Syracuse University, Syracuse, NY, {ltheagar, varshney}@syr.edu

Abstract—Automatic modulation classification (AMC) is an
essential component of several intelligent communication systems.
In this paper, we design and evaluate a practical AMC system that
can be readily deployed to provide robust performance in various
real-time commercial scenarios. Thus, our main goal is to develop
a robust AMC algorithm with low computational complexity for
easy implementation and practical deployment. To this end, we
utilize recently revitalized machine learning based approaches
used for various classification purposes. In our proposed AMC
architecture, we first propose various statistics that serve as
features of the AMC signals; next, we design an artificial neural
network (ANN) based classifier that performs AMC over a wide
range of SNRs. We employ Nesterov accelerated adaptive moment
(NADAM) estimation technique to improve the classification
performance of our ANN. Further, to establish the practical
feasibility of our proposed architecture, we implement it on
a SDR testbed. The proposed ANN-based classifier is shown
to outperforms the hybrid hierarchical AMC (HH-AMC) [1]
system and is flexible enough to easily expand the dictionary
of modulation formats for other applications.

I. INTRODUCTION AND BACKGROUND

Software defined radio (SDR) technology has driven com-

munication systems to become more flexible and enables

channel dependent adaptation to exploit constrained resources.

In SDR communication systems, applications such as authen-

tication, intruder detection, and adaptive transceivers require

functions that address detection and modulation classifica-

tion in the received signal. Within a cooperative system,

AMC enables adaptive transceivers to automatically switch

modulations based on the channel conditions without the

need for a feedback channel between the transmitter and the

receiver. In a non-cooperative system, AMC serves to aid

intelligence, surveillance, and reconnaissance (ISR) missions

by recognizing the modulation of an unknown signal. A wide

variety of AMC techniques proposed in the literature can be

broadly classified into two types: feature based (FB) [2]–[5]

and likelihood based (LB) methods [6]–[10]. It is known that

the LB methods provide optimal performance but are often not

feasible under restricted computational resources and time per

decision (Tdec, i.e., the time taken to perform the classification

1ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER:(a) Contrac-
tor acknowledges Government’s support in the publication of this paper.
This material is based upon work supported by the US Air Force Research
Laboratory under AFRL Contract No. FA8750-16-C-0085. (b) Any opinions,
findings and conclusions or recommendation expressed in this material are
those of the author(s) and do not necessarily reflect the views of AFRL.

operation) requirements [1], [11]. On the other hand, FB

classifiers are computationally efficient and can provide near

optimal performance if designed carefully. In this paper, we

employ the FB approach to design an artificial neural network

(ANN) based classifier that can be implemented on SDRs for

realistic civilian applications.

In recent years, different machine learning techniques have

been employed to determine the modulation format of the

unknown signal via classification. This includes the use of

support vector machines (SVMs) [12] and ANNs [13]–[15]. In

[13], the authors use a multilayer perceptron (MLP) to classify

twelve different modulation formats with high accuracy over

a wide range of signal-to-noise ratio (SNR) values. In [14],

the authors use six features and evaluate two different ANN

architectures trained by the backpropagation method using the

standard gradient descent (GD) learning algorithm. Similarly,

in [15], eight modulation schemes have been shown to be

successfully classified with high accuracy in low SNR con-

ditions. All these studies are limited to simulations and not

evaluated on actual hardware. In our previous work [11], we

have observed the problems faced during the AMC task while

transitioning from simulation to hardware implementation.

Due to the assumptions and unanticipated signal distortions

that are overlooked during simulations, real-time performance

of the above mentioned AMC techniques may be degraded

compared to simulations. Our previous work [8] depicted

scenarios where the optimization would end up at local minima

leading to poor performance. This can also be the case with

ANN based AMC systems during their learning phase in

the absence of adequate learning techniques. We propose an

ANN based architecture for AMC that shall address the issues

outlined above. The major contributions of this paper can be

summarized as follows,
• We propose two novel statistical features that enable

efficient classification of both linear and non-linear mod-

ulation formats.

• We propose an expandable ANN architecture that em-

ploys Nesterov Accelerated Adaptive Moment Estimation

(NADAM) algorithm for learning and performing the

AMC task of signals over a wide range of SNR values.

• We establish the feasibility of the proposed solution

through hardware implementation and extensive perfor-

mance evaluation of the proposed algorithm.

978-1-5386-3180-5/18/$31.00 ©2018 IEEE

The rest of the paper is organized as follows. The system

model is presented in Section II. The preprocessing and feature

extraction methods are presented in Section III. The training

processes and learning algorithms for the proposed ANN are

presented in Section IV and Section V, respectively. The

results of the hardware experiments are presented in Section

VI. Finally, the conclusions are presented in Section VII.

II. SYSTEM MODEL

Consider the baseband discrete-time signal at a receiver in

a flat fading environment,

y(n) = h(n)x(n)+w(n), n = 1, ...,N (1)

where x(n) is the discrete-time transmitted signal, h(n) is

the complex valued channel gain that follows a Gaussian

distribution and w(n) is the additive complex zero-mean white

Gaussian noise process at the receiver with two-sided power

spectral density (PSD) N0/2. For this system model, the overall

ANN based AMC system has three main blocks as shown in

Fig. 1.

Signal

Classifier

Input

samples
Decision

Signal

Preprocessing

Feature

extraction

Fig. 1: System overview of ANN based AMC

(i) Signal preprocessing. This component performs sig-

nal processing designed to enhance the quality of the

received samples. This can include various amplifiers,

filters, automatic gain control (AGC), and frequency-

offset correction, among others.

(ii) Feature extraction. In this block, features pertaining to

amplitude, phase, and frequency of the received signal

are extracted from the preprocessed samples. Various

signal statistics such as moments and cumulants are often

used as features.

(iii) Signal classifier. This is the final component that houses

various machine learning based classifiers that are ap-

propriate for the application. In this paper, we design an

ANN based classifier for the AMC task.

III. PREPROCESSING AND FEATURES EXTRACTION

To ensure that the proposed AMC algorithm can be easily

ported to platforms with limited computational capability,

we set an initial processing constraint and assume that very

little resources can be spared for preprocessing. If the target

platform has various preprocessing modules that are used

by the receiver regardless, AMC can choose to use them

to its advantage. In this work, we only implement AGC in

the preprocessing block. AGC normalizes the amplitude of

the received signal to mitigate the effects of channel gain.

This helps to provide numerical stability to the values of the

features that depend on the amplitude of the signal.

Next, we discuss several features that are extracted from

the preprocessed samples before being fed to the ANN clas-

sification block. Some of the features like amplitude variance

(Var(|y(t)|)), maximum value of the power spectral density

(PSD) of the normalized centered-instantaneous amplitude

(γmax), and higher order statistics have been used previously

[1], [2]. In this work, we introduce two new features, namely,

in-band spectral variation (Var(f)) and deviation from unit

circle (∆o) to be used for classification.

The first feature that we propose is the variance of the

received signal amplitude which is given by,

Var(|y(n)|) = ∑Ns
(|y(n)|−E(|y(n)|))2

Ns

, (2)

where |y(n)| is the absolute value of the over-sampled signal

and E(|y(n)|) represents the mean computed from Ns samples.

This feature is employed primarily to distinguish FSK signals

(CPFSK, GFSK, GMSK) from the rest of the modulation

formats (PSKs and QAMs). The next feature we consider

is the maximum value of PSD of the normalized centered-

instantaneous amplitude [2] given as,

γmax =
max |FFT (acn(n))|2

Ns

, (3)

where acn(n) ,
a(n)
ma
− 1, ma = 1

Ns
∑

Ns
n=1 a(n), and a(n) is

the absolute value of the complex-valued received signal.

Normalization by the instantaneous amplitude is required to

compensate for the channel gain. The feature γmax gives us a

measure of deviation of the PSD of the signal from its average

value. We use both the Var(γmax) and E(γmax) as a part of the

feature vector.

Some higher order statistics like cumulants are efficient in

classifying amplitude and phase modulated signals [3], [4].

Cumulants are statistical measures that are known to be invari-

ant to certain distortions in random signals. Hence, they are

very suitable for the purpose of modulation classification. The

cumulant of a random signal is a function of two parameters,

l denotes the order of the cumulant and k denotes the number

of conjugations involved in the computation of the cumulant

(k ≤ l). The lth order cumulant of the random signal y with k

conjugations can be computed as,

Clk =
No. of partitions in l

∑
p

(−1)p−1(p−1)!
p

∏
j=1

E{yl j−k j y∗k j}, (4)

where l j and k j correspond to the subsets in the partition j.

In our design, we use the fourth order cumulants, specifically,

we use the ratio C40/C42 as the next element of the feature

vector. These cumulants can be evaluated as,

C42 = E(|y|4)−|E(y2)|2−2E(|y|2)2, (5)

C40 = E(y4)−3E(y2)2. (6)

Though the variance of γmax provides a distinguishing fea-

ture between the non-linear modulations, the computation of

the peak spectral values is often affected due to oversampling

and spurious noise. We propose to use an additional feature

termed as the in-band spectral variation, Var(f), that captures

the required frequency variation. Due to the abrupt change

in the phase of the signal, GFSK spectrum has multiple

spectral crests. The CPFSK spectrum is relatively smoother

TABLE I: ∆0 for QAMs.

Modulation limSNR→∞ E(∆0) limSNR→∞ Var(∆0)

16 QAM 0.2639 0.0479

32 QAM 0.2926 0.0331

64 QAM 0.3050 0.0412

128 QAM 0.2976 0.0383

256 QAM 0.3063 0.0438

࢐ ࢑

INPUT LAYER

HIDDEN LAYERS

Output

෍૙ න૙�࢒࢑࢐
૚−࢒࢐ࢇ૚−࢒࢏ࢇ૚−࢒ࢎࢇ ࢒࢑࢈

࢒࢑ࢇ
࢒࢑࢏�࢒࢑ࢎ�

Neuron ࢑ of layer ࢒
Input Design of neuron

OUTPUT LAYER

Layer ࢒ . . .

. . .

. . .

. . .

F
E

A
T

U
R

E
 V

E
C

T
O

R

C
H

O
S

E
N

 M
O

D
U

LA
T

IO
N

Fig. 2: Structure of the artificial neural network

due to the lack of abrupt phase shifts. Finally, the GMSK

spectrum has the advantage of both continuous phase shift

and Gaussian pulses; therefore, GMSK spectrum is relatively

smoother and decays faster over frequency to reduce out of

band emission. Therefore, the degree of smoothness of the

spectrum inside the band of interest [− fi,+ fi] becomes an

appropriate classification feature. We define Var(f) as

Var(f) =Var
(

F
(

y(t)
)

)

, (7)

where F (y(t)) =
{

Y (f)−Y (f −F0)
}+ fi

f=− fi
/F0, F0 is the step

size, and Y (f) = FFT (y(t)).
In linear modulations, we have to classify PSK and QAM.

M-PSK signals can be represented as {Ae− j 2πi
M }M

i=1. Therefore,

irrespective of the value of M, normalized M-PSK signals

always lie on the unit circle. We exploit this property of the

M-PSK signals and propose a new feature to classify between

PSK and QAM signals. The feature Var(∆o) computes the

variance of the deviation of the normalized received signal

from the unit circle. This is given as follows,

∆o =
|y(t)|
E(|y|) −1. (8)

For PSK signals,

lim
SNR→∞

∆o = lim
n(t)→0

|hx(t)+n(t)|
E(hx(t)+n(t))

−1

=

∣

∣

∣
A|h|

(

arg(h(t))−2πi(t)/M
)

∣

∣

∣

E

∣

∣

∣
A|h|

(

arg(h(t))−2πi(t)/M
)

∣

∣

∣

−1

= 1−1 = 0. (9)

Further, from (9), we can write

lim
SNR→∞

E(∆o) = 0, lim
SNR→∞

Var(∆o) = 0. (10)

For QAM signals, the theoretical values of this feature are

tabulated in Table I. All these features discussed above and

the estimated SNR values are fed into the ANN in the form

of feature vector.

IV. TRAINING THE ANN

ANNs have been deployed to solve various classification

problems in multiple fields. The widespread use of ANNs can

be attributed to the plasticity of the default structure to fit the

needs of specific problems. Generally, ANNs are comprised of

an input layer, an output layer, and one or more hidden layers

as shown in Fig. 2. The neurons associated with the network

are contained within the different types of layers mentioned

above. The input layer contains one neuron for each feature in

the feature vector of the training data. The number of neurons

within each hidden layer can be interpreted as a metric for

model complexity and is set prior to the training of the model.

The weighted connections between layers, and the com-

putation occurring at each neuron is depicted in Fig. 2 and

mathematically summarized below. The weighted connection

at neuron k in layer l from neuron j in layer l− 1 is given

as wl
jk. At each neuron in the hidden and output layers the

weighted sum of the previous layer’s outputs is calculated as

follows,
zl

k = ∑
j

wl
jk ∗al−1

j +bl
k (11)

where al−1
j is the output from neuron j in the previous level

and bl
k is a bias term added at each neuron. This sum is then

taken as the input to the activation function where the output

of the neuron is calculated. The activation function we use in

the hidden layers of the network is the sigmoid function and

is defined as,

σ(z) =
1

1+ e−z
(12)

Thus, the output of a given neuron, k, in hidden layer l is

defined as,

al
k = σ(zl

k) (13)

In the output layer, we use the softmax function to compute

the activation as opposed to the σ(.). The softmax function is

given below for the output activation, ao
k ,

ao
k =

ezl
k

∑i ezl
i

∀ k = 1, ...,M (14)

where M is the number of neurons in the output layer

which also corresponds to the number of modulation formats

considered. The motivation behind using the softmax activation

function in the output layer as opposed to the σ(.) stems from

the format of the output labels. We encode a network decision

using a one-hot vector, which takes the form of a 1×M vector

consisting of M− 1 zeros and a single index that contains

a one. The index containing a one is representative of the

modulation that has been selected by the network. Prior to

training, each of the M modulations is associated with a single

index in a one-to-one mapping to the one-hot output vector,

and retains it’s association to that index throughout the training

and testing processes. The output of the softmax function is,

a0
k ∈ [0,1] such that ∑k a0

k = 1. This can be thought of as a

probability distribution over the different possible outcomes.

The modulation corresponding to the maximum value in the

softmax output vector is the classification result.

In our network design, we use the cross entropy loss

function that is suitable for a multiclass output. The gradient of

the loss function with respect to the weights is calculated such

that the error of the network output can be backpropagated to

update the network weights to produce the desired output. The

cross entropy loss function for a multiclass output is given as,

L =−∑
k

yk log(ao
k) (15)

where yk is the expected output and ao
k is the output from the

softmax function in the output layer. The gradient with respect

to the weights preceding the output layer can be derived using

the formula,
∂L

∂w jk

=
∂L

∂ao
k

∂ao
k

∂zl
k

∂zl
k

∂w jk

(16)

The error gradient with respect to a single output in the output

layer is given as,
∂L

∂ao
k

=
−yk

ao
k

(17)

The partial derivative of a given softmax output, ao
k , with

respect to the weighted sum input, zl
k, has dependencies on

the weighted sums of all of the neurons in the output layer.

Thus, the partial derivative
∂ao

k

∂zl
i

takes on different values when

k = i and when k 6= i, given respectively as,

∂ao
k

∂zl
k

= ao
k(1−ao

k) and
∂ao

k

∂zl
i

=−ao
kao

i (18)

Using the above derivatives, the error gradient with respect to

a given weighted sum in an output neuron can be reduced to,

∂L

∂zk

= ∑
i

∂L

∂ao
i

∂ao
i

∂zk

= ao
k− yk (19)

The error gradient with respect to the weighted sum can

then be further backpropagated to the weights contained in

the hidden layers in a similar fashion. The main difference to

consider for backpropagation in the hidden layers is that the

outputs from the neurons in the hidden layers were calculated

using the σ(.), and thus their error gradient needs to be

backpropagated using the derivative of the σ(.), which is,

∂σ(z)

∂z
= σ(z)(1−σ(z)) (20)

Through repeated error backpropagation, the optimal weights

are learned by the network. The process by which this consec-

utive backpropagation occurs is called gradient descent (GD).

Stochastic GD examines one training instance at a time and

backpropagates the corresponding error before moving on to

the following training instance. Batch GD forward propagates

all training examples and then backpropagates an error av-

eraged over the entire training set. In our implementation,

we use stochastic mini batch GD, which forward propagates

a smaller subset of the training set which is followed by

a backpropagation of an error averaged over the smaller

subset. The advantage of using stochastic mini batch GD

is an improvement in runtime from stochastic GD without

the drastically inaccurate weight adjustments associated with

batch GD.

V. LEARNING ALGORITHMS

Further improvements in training runtime can be achieved

by adjusting the learning algorithm used to update the weights

contained in the network. In our network, we implemented the

NADAM algorithm, which is a combination of the Nesterov’s

Accelerated Gradient (NAG) algorithm and the Adaptive Mo-

ment Estimation (ADAM) algorithm. The NADAM algorithm

has been shown to achieve a lower training and validation

loss compared to other learning algorithms in [16]. In the

algorithms discussed below, ft(φ) denotes the loss function

at timestep t parameterized by φ. The gradient of the loss

function with respect to the parameters at timestep t is given

as gt , and the learning rate is represented by η.

Algorithm 1 Nesterov’s Accelerated Gradient

1: gt ← ▽φt−1
ft(φt−1−µmt−1)

2: mt ← µ mt−1 +ηgt

3: φt ← φt−1−mt

The NAG algorithm, shown in Algorithm 1, improves upon

the standard GD algorithm by incorporating a momentum

term, mt . The momentum term essentially accumulates a sum

of previous parameter updates and then multiplies them by

some constant decay factor (µ). This allows the algorithm to

move quickly over dimensions with smaller gradients pointing

in the same direction in the problem space while slowing

the algorithm when the gradient update directions oscillate

back and forth in the problem space. The NAG algorithm

also updates the parameters with a momentum step prior to

calculating the gradient at a given t. This allows the algorithm

to obtain a gradient calculation that will lead the algorithm

more closely along the optimal path. A learning rate annealing

schedule is often used in GD algorithms to help achieve

an optimal solution. Learning rate annealing decreases the

learning rate by some factor as the number of parameter

updates increases. The learning rate annealing factor is omitted

from the algorithms presented below as the learning rate is not

typically annealed at every t.

Algorithm 2 Adaptive Moment Estimation algorithm

1: gt ← ▽φt−1
f (φt−1)

2: mt ← µ mt−1 +(1−µ)gt

3: m̂t ← mt
1−µt

4: nt ← ν nt−1 +(1−ν)g2
t

5: n̂t ← nt
1−νt

6: φt ← φt−1−η m̂t√
n̂t+ε

The difference between NAG and ADAM is in the definition

of the momentum term given in Algorithm 1 and Algorithm

2 respectively. ADAM also incorporates a velocity term, nt ,

which is an average of previous squared gradient multiplied

by an exponentially decaying term, ν. The use of previous

gradients rather than previous parameter updates will allow

the algorithm to make progress towards the optimal solution

regardless of how much the learning rate has been annealed.

This allows for more fine grained convergence near the end

of training.

Algorithm 3 Nesterov Accelerated Adaptive Moment Estima-

tion algorithm

1: gt ← ▽φt−1
f (φt−1)

2: ĝ← ĝt

1−∏t
i=1 µi

3: mt ← µ mt−1 +(1−µ)gt

4: m̂t ← mt

1−∏t
i=1 µi

5: nt ← ν nt−1 +(1−ν)g2
t

6: n̂t ← nt
1−νt

7: mt ← (1−µt)ĝt +µt+1m̂t

8: φt ← φt−1−η mt√
n̂t+ε

The two previously mentioned parameter update algorithms

can be combined to form the NADAM algorithm which is

given in Algorithm 3. The NADAM algorithm essentially takes

the properties of both previous algorithms and incorporates

them into one algorithm. This allows the resulting combined

algorithm to make use of previous parameter updates, pre-

vious gradients, and squared gradients similar to the ADAM

algorithm. An initial momentum step is incorporated as well,

gaining the advantage of a higher quality subsequent gradient

step as seen in the NAG algorithm. The NADAM algorithm

was used to update the weights of the network used in our

implementation.

VI. PERFORMANCE EVALUATION ON TESTBED

TX RX

Fig. 3: Software defined radio testbed
The testbed consists of two USRP (universal software radio

peripheral) X300s equipped with CBX-120 daughterboards

(see Fig. 3), which cover frequency ranges from 1.2 GHz to

6 GHz with up to 120 MHz of instantaneous analog bandwidth.

Though USRPs are capable of multiple-input and multiple-

output (MIMO) operational mode but we do not use this

capability in this experimental setup. The analog-to-digital

and digital-to-analog converters on the motherboard use a

200 MHz master clock and sample at 200 MS/s and 800 MS/s,

respectively. The Linux-based host PC interfaces with the

USRP using a Gigabit Ethernet (GigE) connection. The SDR

setup used to perform classification is similar to [17], but

uses the ANN based classifier and HH-AMC to perform a

comparative study.

One USRP was setup as the receiver while the other

was setup as transmitter and configured to transmit BPSK,

QPSK, 8PSK, 16QAM, CPFSK, GFSK and GMSK at different

transmit (TX) powers. Along with TX gain, attenuators are

also used to vary the TX power and achieve a wider range

of operational SNR scenarios. Therefore, the experiments are

conducted over an estimated SNR ranging from 5 dB to 45 dB.

At each SNR level, samples were collected to have as many

as 800 training examples and 200 test examples for each of

the seven modulations which totaled to 28000 training and

7000 testing examples respectively for each seed. Therefore,

each probability of correct classification (Pcc) value in the

experiments is an average of 10 seeds each consisting of 200

decisions made for each modulations per transmit scenario.

The proposed ANN architecture was implemented using

Python and C++ programing languages. ANNs have a large

number of hyperparameters including number of layers, num-

ber of neurons, learning rate, and activation function that

have to be set before the training process. The chosen ac-

tivation functions and learning rate have been discussed in

Section IV and Section V. In this work, to examine some

hyperparameters, we implemented three different ANN con-

figurations to compare the proposed approach. In our first

implementation, we used two hidden layers with 50 and 25

neurons respectively. Adding more hidden layers enables the

network to model a higher complexity mapping from inputs

to outputs; however, it is often the case that lower complexity

architectures outperform high complexity architectures in prac-

tice because they generalize well to unseen data. Therefore,

the other two implementations of the network consist of one

hidden layer and three hidden layers respectively. To examine

how the proposed framework behaves when enhanced by

adding a new feature, we evaluate the three configurations with

(Fig. 5) and without (Fig. 4) the Var(f) in the feature vector.

In these experiments, each configuration was also evaluated

with and without the estimated SNR in the feature vector.

According to Fig. 4, providing the estimated SNR value

improves the performance of the classifier regardless of the

ANN configuration. At the same time, it is important to

recognize that the difference in performance is not significant.

Therefore, if the resources required to estimate SNR on the

target platform are unavailable, the proposed classifier can

still perform satisfactorily in the absence of estimated SNR.

Overall, the one layer configuration of ANN outperforms

the other, more complex, configurations. The smaller number

of model parameters allows the single layered network to

generalize better to unseen data. Comparing Fig. 4 and Fig.

5, the classification performance of different configurations

improves with the addition of feature (Var(f)). This shows

that the ability of the proposed ANN framework can be further

expanded by adding more features to improve Pcc and/or

expand types of modulation formats that can be classified.

Tx Gain (dB) and Attentuator Loss (dB)

10/30 0/20 0/10 0/0 15/0

P
c
c

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ANN: 1 layer with SNR

ANN: 1 layer without SNR

ANN: 2 layer with SNR

ANN: 2 layer without SNR

ANN: 3 layer with SNR

ANN: 3 layer without SNR

Fig. 4: Pcc vs SNR (without Var(f))

Tx Gain (dB) and Attentuator Loss (dB)

10/30 0/20 0/10 0/0 15/0

P
c
c

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ANN: 1 layer with SNR

ANN: 1 layer without SNR

ANN: 2 layer with SNR

ANN: 2 layer without SNR

ANN: 3 layer with SNR

ANN: 3 layer without SNR

Fig. 5: Pcc vs SNR (with all features)

Tx Gain (dB) and Attentuator Loss (dB)

0/30 0/20 0/10 0/0 15/0

P
c
c

0

0.2

0.4

0.6

0.8

1

HH-AMC

ANN: 1 layer with 4 features

ANN: 1 layer with all features

Fig. 6: Pcc vs SNR

Next, the ANN configuration with the associated hyperpa-

rameters that performed the best in our experiments, namely

the one-layer ANN with all the features and SNR, is compared

with HH-AMC [1] that employs the same features along with

a decision tree to perform classification. Since we introduced

new features in the proposed classifier, for fairness, we eval-

uated an ANN-based classifier that only uses features used

by HH-AMC. It can be seen from Fig. 6 that even the ANN

that uses only the features used by HH-AMC (only 4 features)

outperforms the decision tree based HH-AMC at lower SNR

values. Furthermore, it shows how adding the new features

introduced in this paper further enhances the ANN-based

classifier and achieves high Pcc on actual SDR hardware based

experiments. The sudden spike of Pcc = 0.4 for HH-AMC at

the lowest SNR (0/20 on x-axis) is attributed to the classifier

favoring three modulations regardless of actual transmission.

This led to high Pcc for the favored modulation formats leading

to a sudden spike in average Pcc. This is still ineffective as

a reliable classifier. Finally, we want to highlight that the

Tdec is not impacted by the proposed ANN-based classifier, as

all ANN configurations were trained offline. The worst case

average Tdec among different transmitted modulation for ANN

is 285 ms as compared to 395 ms of HH-AMC.

VII. CONCLUSIONS

In this work, we have introduced a novel practical ANN-

based AMC approach that yields reliable, near-real time

classification performance for commercial applications. To

accomplish this, we used features that are currently used by

the community and also introduced two more features that

further enhance classification performance. We used stochastic

mini batch gradient descent to efficiently train the ANN

and employed the NADAM algorithm for gradient descent

optimization. The proposed solution was implemented using

SDRs and shown to outperform computationally efficient HH-

AMC achieving Pcc upto 0.98. In the future, the proposed

ANN-based architecture can be further expanded by including

more features to improve Pcc and/or increase the number of

modulation formats that can be classified.

REFERENCES

[1] J. Jagannath, D. O’Connor, N. Polosky, B. Sheaffer, L. N. Theagarajan,
S. Foulke, P. K. Varshney, and S. P. Reichhart, “Design and Evaluation
of Hierarchical Hybrid Automatic Modulation Classifier using Software
Defined Radios,” in Proc. of IEEE Annual Computing and Communica-

tion Workshop and Conference (CCWC), Las Vegas, NV, Jan 2017.

[2] A. Hazza, M. Shoaib, S. AlShebeili, and A. Fahd, “Automatic mod-
ulation classification of digital modulations in presence of HF noise.”
EURASIP Journal on Adv. in Signal Processing, vol. 2012, p. 238, 2012.

[3] D. C. Chang and P. K. Shih, “Cumulants-based modulation classification
technique in multipath fading channels,” IET Communications, vol. 9,
no. 6, pp. 828–835, 2015.

[4] A. Swami and B. M. Sadler, “Hierarchical digital modulation classifica-
tion using cumulants,” IEEE Transactions on Communications, vol. 48,
no. 3, pp. 416–429, Mar 2000.

[5] L. Han, F. Gao, Z. Li, and O. Dobre, “Low Complexity Automatic
Modulation Classification Based on Order-Statistics,” IEEE Transactions

on Wireless Communications, vol. PP, no. 99, pp. 1–1, 2016.

[6] F. Hameed, O. Dobre, and D. Popescu, “On the likelihood-based
approach to modulation classification,” IEEE Transactions on Wireless

Communications, vol. 8, no. 12, pp. 5884–5892, December 2009.

[7] T. Wimalajeewa, J. Jagannath, P. K. Varshney, A. Drozd, and W. Su,
“Distributed asynchronous modulation classification based on hybrid
maximum likelihood approach,” in Proc. of IEEE Military Communi-

cations Conference (MILCOM), Tampa, FL, Oct 2015.

[8] Y. Zhang, N. Ansari, and W. Su, “Optimal Decision Fusion Based Au-
tomatic Modulation Classification by Using Wireless Sensor Networks
in Multipath Fading Channel,” in Proc. of IEEE Global Telecommuni-

cations Conference (GLOBECOM), Houston, TX, Dec 2011.

[9] B. Dulek, O. Ozdemir, P. K. Varshney, and W. Su, “Distributed Maxi-
mum Likelihood Classification of Linear Modulations over Nonidentical
Flat Block-Fading Gaussian Channels,” IEEE Transactions on Wireless

Communications, vol. 14, no. 2, pp. 724–737, Feb 2015.

[10] O. Ozdemir, T. Wimalajeewa, B. Dulek, P. K. Varshney, and W. Su,
“Asynchronous Linear Modulation Classification with Multiple Sensors
via Generalized EM Algorithm,” IEEE Transactions on Wireless Com-

munications, vol. 14, no. 11, pp. 6389–6400, Nov 2015.

[11] S. Foulke, J. Jagannath, A. Drozd, T. Wimalajeewa, P. Varshney, and
W. Su, “Multisensor Modulation Classification (MMC): Implementation
Considerations – USRP Case Study,” in Proc. of IEEE Military Com-

munications Conference (MILCOM), Baltimore, MD, Oct 2014.

[12] H.-Y. Liu and J.-C. Sun, “A modulation type recognition method using
wavelet support vector machines,” in Proc. of IEEE Intl. Congress on

Image and Signal Processing (CISP), Tianjin, China, Oct 2009.

[13] J. J. Popoola and R. v. Olst, “A novel modulation-sensing method,” IEEE

Vehicular Technology Magazine, vol. 6, no. 3, pp. 60–69, Sept 2011.

[14] M. M. Roganovic, A. M. Neskovic, and N. J. Neskovic, “Application
of artificial neural networks in classification of digital modulations for
software defined radio,” in Proc. of IEEE EUROCON, St. Petersburg,
Russia, May 2009.

[15] J. J. Popoola and R. v. Olst, “Effect of training algorithms on perfor-
mance of a developed automatic modulation classification using artificial
neural network,” in Proc. of IEEE AFRICON, Pointe-Aux-Piments,
Mauritius, Sept 2013.

[16] T. Dozat, “Incorporating nesterov momentum into adam,” in Proc. of

International Conference on Learning Representations, San Juan, Puerto
Rico, Feb 2016.

[17] J. Jagannath, H. M. Saarinen, and A. L. Drozd, “Framework for
automatic signal classification techniques (FACT) for software defined
radios,” in Proc. of IEEE Symposium on Computational Intelligence for

Security and Defense Applications (CISDA), Verona, NY, May 2015.

