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Abstract—This paper reports on challenges and opportunities
associated with the development of an electroencephalogram
(EEG) based personalized device for monitoring of brain ac-
tivities pertaining large scale neural dynamics in the observed
and providing relevant feedback to the observer. The envisioned
device interprets signals and categorizes them on classes of
typical responses. This could enable a speechless interaction
between an observer and a participant wearing the device. This
framework is different from the brain-computer-interface (BCI)
framework as it focuses on indicators relevant to the human
observer, brain-observer-indicator (BOI). Sensors detect resting
states of the brain with associated patterns, synchrony between
regions, and spectral changes in response to a cognitive event.
A cognitive event results in notable changes in the associated
patterns of electrical potentials. Recognition of these patterns
has a broad application base, if the pattern-activity mechanism
is characterized and recognized. The scope of the project includes
development of a smart interaction support system BOI, relying
on utilization of an EEG toolkit and an artificial neural network
for personalization. The objective is to develop software that
will support applications requiring feedback (i.e., training), along
with a method for obtaining statistical data on the associated
brain activity for engineering studies geared to improve signal
acquisition and device performance. The findings from prelimi-
nary stages of the project are encouraging but indicate multiple
challenges that must be addressed including a trade between
a reduction of noise and complexity of classification software,
definition of classes and recognition of classes and patterns, and
development of an effective training data set acquisition strategy.
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I. INTRODUCTION

Sometimes we wish we could look into people’s minds to

obtain some feedback. A few examples of such situations in-

clude a conversation with a preoccupied person, a questioning

session of a person with an impaired verbal communication

ability, or a training session where learners have various degree

of exposure to the subject matter. Both sides (talking-listening,

teaching-learning) would benefit if some degree of feedback

was available for the observer to understand the state of mind

of the observed participant. The neural excitement within

the brain creates large number of electrical dipoles emitting

electric signals that can be measured and analyzed to identify

patterns, the feedback regarding the participant’s engagement

in the subject can be assessed (Fig. 1).

The major categories of brain wave oscillations, including

Alpha, Beta, Gamma, Theta and Delta waves, are briefly

described in Table I. The patterns of oscillations can be

used to assess participant’s concentration. Electroencephalo-

gram (EEG) measures brain’s ongoing electrocortical activity

recorded from the scalp [1]. Event-related-potential (ERP)

TABLE I: Types of Brain Waves

Type Frequency Significance

Delta, δ 0.5-3.5 Hz in deep sleep

Theta, θ 3.5-7.5 Hz drowsy, daydreaming, light sleep

Alpha, α 8-14 Hz relaxed state, not actively thinking

Beta, β 14-30 Hz interacting, concentrating, solving problems

Gamma, γ 30-70 Hz perception, cognition, memory access.
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Fig. 1: Brain-Observer-Indicator framework.

reflects the changes in electrical activity in response to stimuli

or event [2], and is estimated from EEGs. EEG detects resting

states of the brain with associated patterns and rhythms,

synchrony between regions, and spectral changes in response

to a cognitive event. Deflections in the ERP reflect specific

aspects of cognitive processes. Measures used in ERP research

(scalp topographic distribution, polarity, amplitude, latency,

etc.) may provide important insight about perceptual, cogni-

tive, and motor functions in normal and in psychopathological

conditions [3]. The placement of sensors and the number of

sensors necessary to capture consistent and prominent features,

depends of the manifestations of the event on the scalp.

There is a tremendous body of research relating EEGs and

ERPs to events [3]–[6]. And there is equally impressive body

of literature examining brainwave oscillations patterns, the

balance between β, α, θ and δ waves, and relating these to

activities and outcomes [7]–[9].

In the absence of an explicit task, the brain shows a

temporally coherent activity - "resting state", the default-

mode network associated with daydreaming, free association,

stream of consciousness [10]. Meditators have been known

to show high activity of α brainwaves accompanied by β,

θ and even δ waves that were about half the amplitude of

the α waves [11]. A specific balance between β, α, θ and

δ brainwaves with the strongest amplitude in α is speculated

to enable the individuals to reach peak performance of their

cognitive, creative and athletic abilities through "brainwave

training" [11]. The strength of θ-γ coupling is reported to

increase during learning [12]. α rhythm is the most prominent

component of the vast majority of human EEG records and is

considered to be dominant rhythm. There is ample evidence
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Fig. 2: Brainwave activity in 8-channels displayed in the GUI

and the observed wearing headset.

that the frequency of α rhythm represents neurophysiological

mechanisms directly related to individual differences in infor-

mation processing. It is less influenced by extracerebral factors

(skull thickness or conductance) and its variation is attributed

to the variation in brain function [7].

Over the last decade several schools in the USA have begun

to utilize neurofeedback for the special education of children

with attention and learning disorders, based on a trend that

such kids show low levels of activity in frontal brain areas,

with an excess of θ waves and deficit of β waves [13], [14].

Even though EEG shows a high inter-individual variability [7],

patterns are revealing factors and BOI enablers.

The intent of BOI is to enable an observer to obtain a real-

time feedback from the observed. For example, a feedback

regarding the participant’s thinking is derived from measure-

ments, and assessed to evaluate such indicators as concentra-

tion (boredom, flow, frazzle). These indicators are important

to the observer for improving the quality of interaction. The

methodology is to utilize databases and toolkit measurements

to develop the framework and software architecture with an

artificial neural network (ANN) in its core to enable person-

alization.

II. CHALLENGES

There are several challenges that need to be addressed. The

discernible brainwave patterns must be identified and related to

the typical anticipated response categories (a multidimensional

problem). Effective signal processing approaches for pattern

recognition in the environments with varying noise must be

developed. The effective ANN training and setup criteria must

be developed. Due to tremendous recent developments in

the fields of machine learning and BCI technology [15], we

identified BCI components suitable for a breadth of BOI ap-

plications. BOI consists of an array of compact EEG sensors,

supported by a computing board with software for control,

processing and analyses.

A. Noninvasive Sensors

We use OpenBCI and BCILAB hands-on tools for initial

development and feasibility studies [16]. OpenBCI carries the

hardware and software necessary for the prototype implemen-

tation, and offers the application programming interface (API)

and Programming Environment with the Software Develop-

ment Kit [17]. Simulation tools within the MATLAB and

Octave environments with the standard EEG data available

online [18]. In our setup, shown in Fig. 2, we passively

collect new data using OpenBCI toolkit with various number-

of-sensors and sensor placement. Fig. 2 depicts a snapshot

of the GUI and a photograph of the observed wearing the

headset with eight EEG sensors. We use Ultracortex Mark IV

headset with the Cyton Biosensing Board to record research-

grade brain activity, muscle activity, and heart activity, with

16 channels of EEG sampling from up to 35 different sensor

locations from the internationally accepted 10-20-System for

electrode placement [16]. Dry electrodes are placed on fore-

head and scalp, and ear-clip electrodes are clipped to ear-lobes

to establish reference.
A relatively small number of sensors gives only a coarse

resolution depiction of the scalp potentials; however, the

processing load reduces. The potentials on the scalp are

composites combined from many signal sources, so even

small number of sensors would pick up prominent signatures.

Ideally, we strive to find the setup with the smallest number

of electrodes sufficient to produce the classification data in

a given application. Various number of electrodes and their

placement affect the classification patterns and features. It is

speculated that an electrode capable of assessing its relative

location on the scalp and providing this information to the

classification software, would improve the classification out-

come and simplify the classification software. In the current

configuration classification results significantly vary based on

how the head-gear is aligned. Achieving a consistency in

electrode placement is an unresolved challenge.

B. Brainwave Patterns

There are known brain wave patterns and a body of literature

with interpretations. However, there are could be deviations

from the typical interpretations of such patterns as well as

changes of the interpretation itself. For example, according

to [9], because the amplitude of α oscillation is suppressed

by visual stimuli and enhanced during mental calculation and

working memory, they were thought in the past to reflect

idling or inhibition of task-irrelevant cortical areas. However,

recently these dynamics have gained an attribution to the

mechanisms of attention and consciousness. Simultaneous α,

β and γ frequency band oscillations may indicate unified cog-

nitive operations coordinating the selection and maintenance

of neuronal object representations during working memory,

perception and consciousness [9]. γ oscillations are thought

to transiently link distributed cell assemblies that are process-

ing related information, a function important to perception,

attentional selection and memory [19]. Fig. 3 depicts an

example of the indicators for a learner’s state of mind for

education application of BOI. The Processes are subjective.

The Waves change either in amplitude relative to a background

affecting the balance among the bands or in the degree of

coupling between specific bands. Among the challenges in the

classification framework are

• identification of relevant classes of patterns

• inventory of typical events-processes-library

• strategy for calibration or algorithm learning as applicable

C. Classification Preprocessing

The four major components of BOI system are signal

acquisition, pre-processing, classification, and the application
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Fig. 3: Examples of states for classification

interface. Preprocessing plays a vital role, especially in the fil-

tering and removal of artifacts from EEG signals which consist

of signals from a non-cerebral origin and can be categorized

on physiological and non-physiological artifacts [20]. Indepen-

dent Component Analysis (ICA) provides a potential to the

removal of such artifacts by separating a set of linear mixed

signals into a set of independent components (i.e., movement

of the head) [21]. Non-physiological artifacts comprise noise

from the environment (i.e. electrical equipment). The choice of

preprocessing technique depends on application. Feature ex-

traction is a critical step [22] that can be performed in spatially,

spectrally, and temporally. Spatial features relate to physical

locations on the scalp (not signal origins). Spectral information

provides the frequency details related to the state of mind. Due

to the anticipated variability in EEG signals/features we focus

on machine learning approaches for classification.

D. Machine learning

Many machine learning algorithms are based on training

the system to produce a solution. The type, size, and non-

uniformity of the training data set can affect the accuracy

and practical effectiveness of the system. A properly designed

procedure for obtaining a training set can enable robust

performance.

Several approaches have been studied to address BOI classi-

fication [23]. Each studied system was constrained to a specific

task due to the immense amount of data. The dimensionality

of data is a challenge accentuated around the necessity of

classifying features in the time-series data. EEG signal data are

often time dependent which adds to the dimensionality of the

feature vectors of static classifiers. To mitigate this problem,

dynamic classifiers are used. Common examples of static

classifiers are Artificial Neural Networks (ANN) and Support

Vector Machines [24]. Some dynamic techniques use a Hidden

Markov Model (HMM). HMMs assume the system is modeled

as a Markov process with unobservable states and develop

transition probability distributions for time-series data. Several

adaptations have been made to create dynamic instances

of ANNs: Time Delay Neural Network (TDNN), Gamma

Dynamic Neural Network (GDNN), and Recurrent Neural

Network (RNN). TDNNs attempt to achieve dynamics by

delaying certain sets of inputs and using them in conjunction

with inputs that occur later in time. The process of deciding

which inputs are delayed is arbitrary and application specific.

In general, TDNNs have a lower depth of memory but a higher

resolution of that recent memory. GDNNs have parameters

that can be learned, which allow the network to trade memory

depth for memory resolution, and vice-versa. RNNs allow the

network to keep an internal state that is passed from time

step to time step. Previously we have successfully developed

signal classification techniques for wilress communication

systems [25], [26] and even employed ANN for the same

[27]. Similar challenges were addressed in classifying features

in multi-frequency, multi-modulation, and diverse signal-to-

noise environments. Although HMMs are widely used due to

their simplicity in contrast to other dynamic algorithms, they

have several drawbacks. RNNs can achieve a much larger state

space and can model higher order relationships. Furthermore,

RNNs have been shown to outperform TDNNs and GDNNs

in various classification tasks in [28]. There has been recent

work on RNNs to further improve their effectiveness as well

as allow them to retain memory for longer periods of time.

For the reasons mentioned above, the classification algorithm

considered for the notional BCI is a Long-Short Term Memory

Network (LSTM), which is a specific type of RNN.

III. APPLICATION

A. Feedback to teacher in an educational setting

In an education setting, a BOI will transform the way

student and instructor interact and will improve the efficiency

of learning (the seamless and honest feedback to teacher will

enable teacher to adjust their teaching approach).

A teacher will have a tool to assess if the students are taking

in the material and to manage performance-stress relationship

to improve the quality of teaching. Based on literature survey,

we assume several representative groups of the mind state

relevant to education setting (Fig. 3):

• relaxed not thinking - α waves at a resting state

• daydreaming - a resting state network with θ and α waves

• thoughtless over-activity - increase in θ
• boredom - increase in θ waves, decrease in β
• thinking - increase in α or β waves

• remembering - balance between α, β and γ waves

• learning - increased strength of θ-γ coupling

• flow - peak performance with balanced β, α, θ and δ
• frazzle - increase in β waves, decrease in θ
• meditation - α accompanied by weaker β, θ and δ waves

The balance and coupling between different frequency

bands are prominent features. However, approximate balance

is a fuzzy feature: difference between flow and daydreaming

is in the amount of contributing β waves, while a slight

increase in θ and α indicate a loss of focus. In addition,

a degree of stress plays a significant role in the activations

of brain networks. The neurobiology of frazzle indicates that

frazzle arises from the nervous system’s plan for crisis [29].

During this state, control from the brain’s executive center in

the prefrontal area (behind the forehead) shifts to the more

primitive emotional circuitry in mid-brain (between the ears).

For learners this means the more anxious they are, the less

they register their lessons.

Fig. 4 provides an example of identification of relevant

classes under the constraints of the application in educational
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Fig. 4: Identifying criteria for classification

setting. The number of sensors and their locations in the 10-

20-System grid are determined first. These are selected to

detect changes in the projected to the scalp potentials due to

activity originated approximately in the visual cortex, visual

information processing regions, in the prefrontal area and mid-

brain. Next we select application specifics, such as attention

to visuals or active thinking or meditation/concentration. The

observed begins to pay attention and learn, while the observer

monitors the brainwave activity. Dominant δ and θ waves will

give away that the observed is not paying attention.

Such scenario could be classified using a traditional clas-

sification tree if variability was limited. There are several

major contributors to the variability: the stress level, the degree

of exposure to the subject, the intention (pass the test and

forget, or retain the information) and attitude (which could be

influenced by peers or environment). There are differences of

information retention based on the degree of exposure (new,

familiar from the short term memory, known from the long

term memory), which activates different networks and results

in different patterns of oscillations.

A personalized setup of the BOI is possible with ANN.

It does not depend on the number of sensors, but depends

on the quality of training data set. A training session must

be executed to obtain the brainwave activity signals from the

resting state, learning and retention states with a different

degree of participant engagement from boredom to flow to

frazzle or under different stress conditions. We set up an ANN

training session for low stress environment and attempted to

initiate these states in the participant to generate a sufficient

amount of data for ANN training. The training strategy is

transferable to other participants.

IV. DESIGN CONCEPT

A. System Overview

The system architecture components relevant to the soft-

ware development are depicted in Fig. 5. The main software

blocks are the signal acquisition and assimilation, the sig-

nal processing and feature extraction, the classification, the

reasoner, and the interface to a communication system. The

reasoner performs analyses of classified data and produces

the response indicator decision. The communication system

delivers the concise relevant information to external devices

(mobile phone, personal computer, etc.).

The classification system can use a variety of classification

approaches to perform a capability assessment and trade

study for performance versus system resources. We reduce the

number of classes in the library to three: not thinking, mental

calculation, and learning. This limits the waves of interest

and the features to the amplitude change in θ and α waves,

and to the θ-γ coupling. We intend to gradually expand the

classification library to include other identified states, both the

unambiguous states and the fuzzy states.

B. Experiment Implementation

For initial experiments we focused on a LSTM network

approach to the classification task. The Nesterov-Accelerated

Adaptive Moment Estimation (NADAM) algorithm was used

to optimize the LSTM network during the training phase of

our experiments. LSTM networks are a more specific type of a

broader category of artificial neural networks called RNN, and

were presented as an improvement to the vanilla RNN when

they were first introduced to machine learning field. RNNs

perform learning tasks related to sequence representation,

which include tasks such as classification and generation. One

way to conceptualize RNNs, is to imagine a sequence of feed-

forward networks, one for each time step in the input sequence,

with connections from inputs to outputs as well as connections

across time steps. LSTMs have similar connections between

time steps, additionally these networks have internal cell states,

which are shared across time steps, that allow the network to

learn time dependencies between the input features at different

times in the input sequence. LSTMs incorporate the idea of

four different gates, namely the input, forget, output, and

block input gate. These gates essentially control information

flow within the LSTM cell. The use of these gates allow the

LSTM to learn long term as well as short term dependencies

in the input sequence. The way these gates interact with the

information contained in an LSTM cell can be characterized

using the formulas that the concepts are based on, thus a

mathematical outline of the LSTM structure follows. Input

weights will be denoted as W , recurrent weights will be

denoted as R, bias weights will be denoted as b, and the

subscript will determine to which gate the associated weight

belongs to. The subscripts used will be i, f , o, g, denoting

the input, forget, output, and block input gates respectively.

Superscripts will be used to denote the time step to which the

variable belongs. The logistic sigmoid function will be denoted

using σ(x) and is given explicitly below:

σ(x) =
1

1+ e−x
(1)

Pointwise vector multiplication is denoted with ⊙. The input

and output vectors at a time t are given as xt
,yt respectively.
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Lastly, the cell state at a time t is given as ct . The definition

of these variables allows for the interpretation of the forward

propagation through an LSTM network. The weighted sum and

activation of the block input gate is given below, respectively:

ḡt =Wgxt +Rgyt−1 +bg gt = tanh(ḡt) (2)

The tanh function is used here as the activation function

for the block input gate; however, any pointwise non-linear

function can be substituted. The weighted sums and activations

for the input, forget, and output gates are all computed in a

similar manner and are given below using the same convention

as above:

īt =Wix
t +Riy

t−1 +bi it = σ(īt) (3)

f̄ t =Wf xt +R f yt−1 +b f f t = σ( f̄ t) (4)

ōt =Woxt +Royt−1 +bo ot = σ(ōt) (5)

Following the calculation of the gate activations the new

cell state is computed and given as:

ct = zt ⊙ it + ct−1⊙ f t (6)

Finally, the output of the LSTM cell at a time t is,

yt = tanh(ct)⊙ot (7)

Where again, the tanh function may be substituted with any

pointwise non-linear function. In our implementation we add

a softmax layer which takes the output vector yt as an input

and places a distribution on it so it can easily be interpreted

for a classification task.

The backpropagation of error through a recurrent network

differs from a static network in that the error gradient at

the future time steps impacts the error gradient at past time

steps in the sequence. The standard backpropagation algorithm

can be modified to the backpropagation through time (BPTT)

algorithm and can subsequently be applied to the LSTM

structure. The BPTT algorithm is outlined in the following

as it applies to the LSTM network defined above. The error

gradient passed down from the layer above will be represented

using ∆t . At the upper most LSTM layer this corresponds to
δL
δyt where L is the loss function being used to minimize the

error of the network. Thus, the error gradient with respect to

the LSTM output vector within the LSTM block is defined as:

δyt = ∆t +RT
g δgt+1 +RT

i δit+1 +RT
f δ f t+1 +RT

o δot+1 (8)

The error gradient with respect to the output gate can

subsequently be computed with:

δot = δyt ⊙h(ct)⊙σ′(ōt) (9)

Where h is the pointwise non-linear function used in the

network’s forward propagation, in our case, tanh. The error

gradient with respect to the cell state in the LSTM is given

as:
δct = δyt ⊙ot ⊙h′(ct)⊙+δct+1⊙ f t+1 (10)

The error gradients with respect to the forget, input, and

block input gates are given below, respectively:

δ f t = δct ⊙ ct−1⊙σ′( f̄ t) (11)

δit = δct ⊙ zt ⊙σ′(īt) (12)

δgt = δct ⊙ it ⊙h′(ḡt) (13)

To compute the error gradient with respect to the gate

weights, we find the outer products of the error gradient with

respect to the gate and the input, and sum the over time steps.

The equations below describe this process, and the ∗ denotes

any one of i, f ,o,g:
δW∗ =

T

∑
t=0

δt
∗⊗ xt (14)

δR∗ =
T−1

∑
t=0

δt+1
∗ ⊗ yt (15)

δb∗ =
T

∑
t=0

δt
∗ (16)

The error gradients with respect to the weights computed

above can be used to update the weights within the network

and ultimately train the LSTM model. The updating of the

model parameters often occurs through a gradient descent

process. There are many adaptations and improvements to the

standard gradient descent algorithm that can be used; however,

in our implementation we use the NADAM algorithm. The

NADAM algorithm, which is a combination of the Nesterov’s

Accelerated Gradient (NAG) algorithm and the Adaptive

Moment Estimation (ADAM) algorithm, has been shown to

achieve a lower training and validation loss compared to other

learning algorithms in [30]. In the algorithm discussed below,

ft(φ) denotes the loss function at time step t parameterized

by φ. The gradient of the loss function with respect to the

parameters at time step t is given as gt , and the learning rate

is represented by η.

The NADAM algorithm, given in Algorithm 1, incorporates

a momentum term, which accumulates a sum over previous

gradients and then multiplies them by some constant decay

factor (µ). A velocity term, nt , is used which makes use

of a sum of previous squared gradients multiplied by an

exponentially decaying term, ν. This allows the resulting com-

bined algorithm to make use of previous parameter updates,

previous gradients, and squared gradients similar to the ADAM
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Algorithm 1 NADAM

1: gt ← ▽φt−1
f (φt−1)

2: ĝ← ĝt

1−∏t
i=1 µi

3: mt ← µ mt−1 +(1−µ)gt

4: m̂t ← mt

1−∏t
i=1 µi

5: nt ← ν nt−1 +(1−ν)g2
t

6: n̂t ← nt
1−νt

7: mt ← (1−µt)ĝt +µt+1m̂t

8: φt ← φt−1−η mt√
n̂t+ε

algorithm. An initial momentum step is incorporated as well,

gaining the advantage of a higher quality subsequent gradient

step as seen in the NAG algorithm. The NADAM algorithm

was used to update the weights of the network used in our

implementation.

C. Experimentation platform

Data acquisition is an incremental part in experimentation

process. Initial experiments were mainly focused on clas-

sifying data that was acquired from an online EEG signal

database. Since, we have shifted our focus to acquiring EEG

signals ourselves, using commercial hardware to record our

own brain activity. The Ultracortex Mark IV EEG Headset

was used in 8-sensor configuration to obtain samples. The

Cyton Biosensing Board samples these EEG signals at 250Hz

and relays the sampled data wirelessly back to the computer

using the OpenBCI USB dongle which make use of RFDuino

radio modules. The Cyton Biosensing Board is also capable

of communicating wirelessly with any mobile device that

is compatible with Bluetooth Low Energy. Once the data

is transmitted to the computer it is then visualized by the

user within the OpenBCI GUI. From the OpenBCI GUI, the

signals are plotted to examine signals in many different ways

including a time series, FFT plot, band power, and activity

over a head plot. This allows us to examine and visualize

data. We have observed the exemplary changes in brain wave

amplitudes corresponding to the "not thinking" and the "mental

calculation" processes. We noted an increase in wave coupling

corresponding to the subjective "learning" category. Such data,

if repeatable, are expected to be effective for training ANN.

Monitoring 8-channels with 3-bands θ, α and γ and estimating

2-features (amplitude-change and coupling-change) appears to

provide sufficient information for classification.

V. CONCLUSION

We defined classes and a framework for BOI pattern recog-

nition in education setting, suitable for the tree- and ANN-

classifiers. We observed exemplary discriminating changes

in the wave bands (corresponding to three processes: not

thinking, mental calculation, and learning) real-time on the

GUI. We setup ANN and are developing training data set

acquisition strategy. The BOI framework is ready for testing

and expansion. The findings are encouraging but multiple

identified challenges still need to be addressed.
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