
COmBAT: Cross-layer Based Testbed with Analysis
Tool Implemented Using Software Defined Radios

Jithin Jagannath∗†, Hanne Saarinen∗, Timothy Woods∗, Joshua O’Brien∗, Sean Furman∗,
Andrew Drozd∗, Tommaso Melodia†

∗ANDRO Advanced Applied Technology, ANDRO Computational Solutions, LLC, Rome NY,

{jjagannath, hsaarinen, twoods, jobrien, sfurman, adrozd}@androcs.com
†Department of Electrical and Computer Engineering, Northeastern University, Boston MA, melodia@ece.neu.edu

Abstract—In this paper, we discuss the implementation of
a CrOss-layer Based testbed with Analysis Tool (COmBAT).
COmBAT is developed to enable the design and development
process of next-generation cross-layer based wireless communi-
cation technologies for tactical ad-hoc networks. The COmBAT
architecture comprises of two major components; (i) Adaptive
cross-layer (AXL) framework implemented on each node in the
testbed and (ii) NEtwork Analyzing Tool (NEAT) that provides
a graphical interface for users to track and analyze network
metrics as well as provide a single seat control over the network
parameters on-the-fly. In this paper, we discuss the design and
implementation of these components in detail and demonstrate its
feasibility by implementing three cross-layer based algorithms on
COmBAT using a nine node ad-hoc network. The results validate
the modularity and adaptability of COmBAT and demonstrate
how COmBAT can be used to develop as well as refine current
and future cross-layer algorithms providing a feasibility study
that lends itself to the transition of theoretical network research
from testbed to relevant military hardware.

I. INTRODUCTION AND BACKGROUND

Wireless communication is a critical component of to-
days’ modern military. Over the past decades much work has
been performed to improve spectrum utilization by enabling
dynamic spectrum allocation (DSA) [1], [2]. Past research
has shown that it is advantageous to examine interactions
between routing, spectrum allocation, session management and
channel conditions for the purpose of developing a cross-
layer algorithm that is capable of jointly maximizing different
parameters (throughput, delay, among others.) of the network
[3], [4]. The cross-layer based approaches have been bolstered
by the advent of software defined radios (SDRs). In recent
past, there have been several efforts to increase the flexibility
of radios to provide more dynamic reconfiguration capabilities.

GNU radio is an open-source signal processing software
that provides great flexibility specifically at the physical layer
of SDRs. GNU radio comprises of various signal processing
and digital communication blocks and is an excellent tool
to control SDRs. However, the majority of the contribution
is limited only to the Physical layer. There has also been
an effort to relocate some of the processing functions to
Field-programmable gate array (FPGA) [5] to improve the
delay performance. This makes it difficult to integrate new
algorithms for testing and evaluation purposes. Some other

1This material is based upon work supported by the US Air Force Research
Laboratory under Award No. FA8750-14-C-0098 and Award No. FA8750-16-
C-0086

works [6], [7] aim to provide reconfigurable MAC protocols by
decomposing the overall design into core fundamental blocks.
In [6], the implementation of these fundamental blocks are split
between PC and FPGA depending on the time critical nature of
the blocks. In [7], the authors implement an abstract execution
machine on a resource-constrained commodity WLAN card.
Recently, software defined network (SDN) using an Open-Flow
[8] based approach has been proposed for evaluating routing
protocols. The overall concept of Open-Flow is to keep the
data path on the Open-Flow switch itself while moving the
high-level routing decision to a separate controller (server).
The switch performs packet forwarding based on the flow
table defined by the controller and use Open-Flow protocol
to communicate with each other. The majority of the work
on OpenFlow has been concentrated at the network layer of
the protocol stack. Real-time reconfigurable radio framework
with self-optimization capabilities (RcUBe) [9] is a flexible
design that promotes a cross-layer approach to develop a
reconfigurable protocol stack. The RcUBe framework was
developed to provide the required modularity to implement
adaptive algorithms that can reconfigure SDR dynamically on-
the-fly. In this work, we adopt some of the design concepts
of RcUBe to develop the cross-layer framework required for
COmBAT. The design is discussed in detail in section II.

Even with these advancements, a major challenge faced
by developers who are transitioning algorithms and proto-
cols to military grade hardware is the lack of a cross-layer
based multi-hop testbed architecture that enables easy im-
plementation of cross-layer technologies. These testbeds are
essential to corroborate the results obtained in simulations
and evaluate how to refine these algorithms to ensure a
successful transition process. Some of the requirements of
such a testbed include, a flexible cross-layer based protocol
stack [9], modularity to integrate new algorithms with ease,
framework to accommodate both centralized and distributed
solutions, tools to monitor the performance of the network in
real-time, and having the ability to run unsupervised scripted
experiments over extended periods of time. Having such a
testbed expedites the design and development process of next-
generation wireless communication technologies destined for
a military SDR system. Therefore, in this paper we discuss
the design and implementation of COmBAT developed us-
ing SDRs. COmBAT is envisioned to become a state-of-the-
art platform for designing, developing and validating cross-
layer based algorithms and protocols before transitioning to
a military platform. To validate the modularity and flexibility
of COmBAT, we have implemented and evaluated the joint

Milcom 2016 Track 2 - Networking Protocols and Performance

978-1-5090-3781-0/16/$31.00 ©2016 IEEE

routing and spectrum allocation algorithm (ROSA) [3], routing
with fixed allocation (RFA) and routing with dynamic alloca-
tion (RDA). We further discuss how the real-time monitoring
ability is used to analyze the performance of the network in
terms of throughput, spectrum management and instantaneous
routing decision.

The rest of the paper is organized as follows. In Section II,
we discuss the design and implementation of COmBAT. Next
in Section III, we describe the evaluation process to establish
the feasibility of COmBAT and prove its adaptive capabilities.
Finally, the conclusion is presented in Section IV.

II. COMBAT DESIGN

In this section, we discuss the design and implementation
of different constituents of COmBAT.

A. Adaptive Cross-Layer (AXL)

Register Plane

Data management/
storage Control Plane

Medium access controller

Application Layer

Session Manager
Packet management

Decision Plane
Algorithms/Decisions

Wireless Data channel & Control channel/
Wired link for NEAT

Physical Layer

ROSA RFA RDA

S1 S2

Thresh

CSMA/CA TDMA FDMA

TEXT Voice

Single Packet or Streaming
Video

Fig. 1: Adaptive cross-layer (AXL) framework.

The overall AXL framework used in COmBAT is depicted
in Fig. 1, which is an adaptation of the RcUBe frame-
work. AXL retains three essential planes proposed by RcUBe
namely; the decision plane, register plane and control plane.
Each node in the network uses the AXL framework in place
of a traditional protocol stack and are therefore referred to as
AXL nodes throughout this paper. As noted, AXL consists
mainly of the application layer, session manager, decision
plane, control plane, register plane and the physical layer.
Below, we discuss the implementation of these layers/planes
in detail.

In implementation, the AXL framework consists of Python
multiprocessing processes which are initialized at node startup
using an AXL daemon. The daemon imports the main modules
and properties that are used in the different layers/planes of
the framework as required. The properties include predefined
values for the network such as data timeout duration, node IP
and MAC addresses, payload sizes and limits on the number of
sessions the framework supports. However, most of the proper-
ties are dynamic in nature and they can be reconfigured on-the-
fly based on network optimization strategies or user input. The
processes that are started by the daemon run continuously until

shutdown. These processes include the register plane, session
manager, control plane and the physical layer. The decision
plane is not a process but a collection of functions that can
be called by the framework when needed. Each layer/plane
can share information with each other by a combination of
three methods; direct function calls, shared memory or by
overhearing global events (global with respect to node, not
the entire network) that can be triggered by any process in the
framework. These functionalities allow for a flexible cross-
layer communication between all network protocols.

Application (APP) Layer. The current AXL software
package provides two data generation APPs to evaluate the per-
formance of the network. The APPs support either text or audio
and can be operated in packet streaming mode or packet-by-
packet mode. For streaming mode, the source data is repeated
until a user specified amount of data has been generated. The
streaming mode is generally used in experiments requiring a
constant bit rate (CBR) source for a fixed duration of time.
Packet-by-packet mode is used to evaluate the effect of bursty
transmissions or alternatively as an end-to-end user friendly
APP for simple network demonstrations. The audio applica-
tions are implemented using Python and a standard Linux
library called Advanced Linux Sound Architecture(ALSA).
The APPs connect to the AXL daemon via a TCP/IP socket.
For each APP that connects, a unique connection object is
created that manages data transfer between the APP and the
AXL framework. When this connection is created, the APP
declares itself as either a text or audio APP and whether or
not it will be sending or receiving data. The sending APP
passes each packet to the connection object via the socket
interface. Each packet contains the user generated parameters
and quality of service (QoS) parameters. The packet is parsed
and then sent to the session manager for the next processing
stage. Receiving applications listen on the socket interface until
data is pushed up the stack. When data is received by the
application, the message will be played back to the user as
text or audio accordingly.

Session Manager. In the AXL framework, the session
manager provides the capability of simultaneous multi-session
management. When a packet arrives at the session manager, the
session manager creates a session object based on the packet
parameters, which include process ID that is created by the
OS, source and destination IP, data type, any QoS parameters,
and the packet number generated at packet creation. Packets
that correspond to existing session objects are appended to
their appropriate session queue. Packets receive their network
headers based on the parameters in the session object men-
tioned earlier. Packets that have arrived at their destination
node are stripped off of their network headers and forwarded
to the receiving APP via AXL daemon.

In implementation, the session manager is designed as a
multiprocessing first in first out (FIFO) with a user specified
update period. The update period dictates the timeout for
updating packet queues. During each update period, the session
manager stores the current packet queue length of each session
in the register plane and triggers an event flag which indicates
that the transmitter has backlogged session ready for routing
decisions.

Decision Plane. As the name suggests, this is the com-
ponent where all the logical decision making and algorithm

Milcom 2016 Track 2 - Networking Protocols and Performance

executions take place. These algorithms pertain to routing
algorithms, spectrum allocation, automatic modulation classifi-
cation and other resource allocation decisions. The complexity
of the algorithms can vary from threshold decision to iterative
algorithms like the Expectation and Maximization (EM) algo-
rithms or solvers for convex optimization problems. Decision
algorithms can (i) modify a parameter in a protocol, (ii) trigger
switching among different modes within a protocol, and (iii)
enable switching among different protocols altogether [9].

In implementation, there are currently three routing algo-
rithms, stored as software modules, available for use (discussed
in detail in section III). Each routing module can be passed
as an instance for the decision plane to use during runtime.
The chosen and active routing module is requested by the
session manager to execute the algorithm when a session is
backlogged. The results of the executed algorithm is stored in
the register plane for other layers/planes to access. Conversely,
to execute the algorithm, the decision plane obtains the infor-
mation from the register plane. After executing the algorithm
within the routing module, the decision plane triggers an event
flag that prompts the control plane to schedule a transmission.

It should be noted that the interactions between the decision
plane and the other layers/planes in AXL take place via the
register plane, through global events or through direct function
calls. Therefore, when users want to implement a new decision
algorithm, they can simply include their new decision module
as part of the framework and initialize it in the AXL daemon
as a new routing option. It is recommended that the new
module follows a similar software structure as the already
existing algorithms, so that the need to change any function or
event name from inside the module is minimized. If the new
module is triggered by something other than events that are
currently included in the AXL framework, the user can add
new events via an initialization file. The user can achieve the
required interaction between the AXL layers/planes by setting
and clearing the events inside the framework.

Control Plane. The control plane houses the control logic
used to access the wireless medium. The control plane contains
the finite state machine (FSM) used to implement different
MAC protocols. The chosen MAC protocol defines the exact
set of states, events, conditions and actions required to operate
FSM. The control plane can be initialized to use multiple dif-
ferent MAC protocols depending on the situational awareness
gathered from other layers/planes of the stack as shown in [9].
Each MAC protocol should have its FSM implemented in the
control plane as a separate FSM initialization function. Future
developers can take advantage of the baseline FSM model that
is already defined in the control plane by modifying its states
and actions as needed by the protocol. An example of a state
transition diagram for a carrier sensing multiple access with
collision avoidance (CSMA/CA) based MAC protocol [3] is
given in Fig. 2. The state transition diagram describes the
interaction between all possible states, events and actions for
the receive and transmit paths. As shown in Fig. 2, when
an event Data_available is set, Send_RT S (request-to-send)
action is taken as the FSM goes from an idle state to wait CT S
(clear-to-send) state. The next event that the FSM is looking for
is either CTS received or CTS timeout and the FSM transitions
depending on which event was observed. The rest of the state
transition diagrams can be interpreted in similar manner.

Receive Path

Partial_data or
Data_timeout < TH,
Send_ACK,
clear_state

SEND
DATA

WAIT
ACK

IDLE

Data_sent,
Clear_state

Data_timeout,
Clear_state

Ack_timeout >= Th,
Clear_state

WAIT
CTS

Ack_received or
Ack_timeout < Th,
Clear_state

Ack_received,
Clear_state

Data_available,
Send_RTS

CTS_received,
Send_DTS

CTS_timeout,
Clear_state

WAIT
DATA

RTS_received,
Send_CTS

Data_received,
Send_ACK,
clear_state

Data_timeout >= TH,
Clear_state

Event,
Action

Transmit Path

Fig. 2: Finite state machine in control plane.

The FSM is generally in an idle state until the corre-
sponding global AXL events are flagged to invoke a state
transitioning process. These global AXL events are used
in cross-layer communication between different layers/planes
and should not be confused with the events used by the
FSM itself. The events in the FSM are strictly defined by
the chosen MAC protocol and dictate the state transitioning
process that allows the control plane to manage medium
access. The global events such as SESSION_ROUT ING that
transition the FSM from an idle state are usually set in the
decision plane after routing decision has been made. Some
other examples of such global events used throughout AXL
include SESSION_PROCESSING event which is used by the
session manager to indicate that the node is busy processing a
session and START _SENSE event that prompts the PHY layer
to perform spectrum sensing. Therefore, we can state that the
overall AXL framework follows an event driven design.

Register Plane. The register plane is essentially a node
database used to share information across layers/planes. Al-
though the register plane does not perform any computation
and does not have any decision making ability, it is an integral
part in the overall cross-layer design. The register plane can
be considered a central information hub that can be accessed
by different layers/planes of the AXL framework. Data sharing
among multiple processes is achieved through Python manager
dictionaries. The global information that needs to be shared
among all layers is stored in a manager dictionary which allows
for only one process to read or write information in the register
plane at a time. The main dictionaries that reside in the register
plane are a global register dictionary (GRD), global values
dictionary (GVD) and session backlog dictionaries (SBD).

AXL nodes learn about their environment by overhearing
control packets on the common control channel (CCC) dis-
cussed further in section III. Each node stores local information
in a node dictionary in the GRD. The node dictionary is
appended to every control packet sent on the CCC. The infor-
mation in the node dictionary is continuously updated as new
information becomes available. Node dictionary information
includes IP and MAC addresses, the node location, local noise
plus interference, session packet queue lengths, current routing
algorithm among others. Nodes maintain a copy of its own
node dictionary, as well as a copy of its neighbor’s dictionary
in the GRD. The GRD also contains information like the
designated frequencies, possible next hops and neighbors. The
GVD stores the current routing decision parameters as well

Milcom 2016 Track 2 - Networking Protocols and Performance

as the current state of the FSM. SBD has a list of all local
sessions and their most up to data packet queue lengths. The
routing algorithm is able to access this information stored in
the register plane as it optimizes the routing parameters. Other
layers/planes can similarly read or write information in the
register plane as needed. Additionally, in contrast to RcUBe,
the register plane of each AXL node is also connected to an
external analysis tool that collects updated network information
through an Ethernet connection. By tapping into each node’s
register plane, the analysis tool is able to display important
information about the current status of the network.

Physical (PHY) Layer. The PHY layer is easily separable
from the rest of the framework as the goal is to allow the
integration of different radio frontends and signal processing
software. The PHY layer consists of a hierarchical implementa-
tion where the lowest level includes signal processing software
specific libraries such as GNU Radio and a universal hardware
driver (UHD) interface used with the universal software radio
peripheral (USRP) family of products from Ettus. The PHY
hierarchical module, consists of functions that are directly
accessible by the control layer and the register plane. This
implementation allows for a simple interface between AXL
and a PHY layer making this design SDR hardware agnostic.

B. Network Analysis Tool (NEAT)

Implementation. NEAT is a network global entity that is
connected to each AXL node via Ethernet as shown in Fig.
4. The global entity implies that NEAT can receive and send
messages to all AXL nodes present within the testbed. NEAT
is connected to each node through TCP/IP sockets using two
ports to relay data between the AXL nodes and itself. One port
is used to listen to the control packets exchanged by the nodes.
Each node that transmits a control packet on the wireless
control channel also transmits the same for NEAT over the
Ethernet as a mirror copy. The second port is used for direct
exchange of data between NEAT and a specific node’s register
plane. The use of these two different ports is to listen for
control packets and register plane data in independent threads.

In implementation, Qt Designer is used to develop the
graphical interface and the PyQt library is used to link gen-
erated Qt Designer code with python code. NEAT utilizes
three classes; one for the graphical aspect of NEAT, one for
exchanging data with the register plane of the nodes, and the
other for listening to CCC. The slots and signals of PyQt allow
data to be exchanged between the graphical class and the other
two classes. Therefore, slots and signals allow data acquired
from the register plane and control packets to initiate changes
to the displayed graphics.

Additionally, it should be noted that since COmBAT is
envisioned to be used with different types of SDR it is
important to separate the communication required for NEAT
from the actual wireless links used by the network to perform
metric evaluation. This is the reason why NEAT uses Ethernet
rather than wireless links for monitoring. This will also en-
sure reliability and consistency in the performance of NEAT
irrespective of the SDR being used. In cases where we want
NEAT to emulate a command and control (C2) node using only
wireless link, we will have to redesign NEAT. One possible
solution will be to extend the idea of internet of things (IoTs)

where every node is connected to the cloud and C2 Node is
able to monitor and control the nodes using the cloud interface.

Live metric
monitoring

Remote
settings
configuration

Instantaneous
Node
Information

Fig. 3: Screenshots of NEAT.

Features. The major functionalities of NEAT can be di-
vided into three different categories; (i) accessing instanta-
neous node information, (ii) live Metric monitoring and (iii)
remote configuration control. NEAT collects the IP addresses
and MAC addresses of every AXL node currently active in the
network. As shown in Fig. 3, users can monitor each node’s
instantaneous queue length, channel sensing information, rout-
ing algorithm, optimization decisions, among others. NEAT
observes all the control packets exchanged between different
AXL nodes. All these information allows the user to check
the status of the network and identify nodes that are faulty or
not responding. This eliminates the need to be at each node’s
location to verify the operation of individual nodes.

Performance metrics are important for any network evalu-
ation process. NEAT currently provides live updates of the
throughput achieved by the overall network and individual
sessions. Additionally, number of packets transmitted, received
and dropped by selected nodes of the network can also be
displayed in real-time. This functionality helps the user to
visualize how packets are being handled at each node, making
it easy to identify any traffic bottlenecks present in the network.
These metrics are also used to compare the performance of
different algorithms with each other. As need arises, users
can add other metrics to be monitored in the network in
similar manner. As mentioned earlier, the other functionality
of NEAT is the ability to trigger configuration changes in
the nodes on the network. For instance, NEAT can manually
switch the routing algorithms being used by the nodes in the
network. Users can also set the network to an automatic mode,
via NEAT, where each node dynamically chooses a routing
algorithm depending on the situation awareness gathered from
its neighbors. Other parameters that can be altered on-the-
fly include; number of retransmission attempts by the control
plane, different thresholds used by decision plane, among
others that a developer can specify.

Milcom 2016 Track 2 - Networking Protocols and Performance

Control Link Data linkN1 N2 N3

N4 N5 N6

N7 N8 N9

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

NEtwork Analysis Tool
(NEAT)

AXL NODES

Network Switch
Ethernet Links for NEAT

Interferer

MIMO Cable

Fig. 4: Nine Node COmBAT Topology.

Number of sessions
1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (k

bi
ts

/s
ec

)

80

100

120

140

160

180

200

220

ROSA

RDA

RFA

Fig. 5: Througput vs Number of sessions.

III. TESTBED IMPLEMENTATION AND EVALUATION

Figure 4 depicts the current configuration of COmBAT
consisting of a nine node network that is arranged in a grid
topology. Each node consists of two USRPs (control and
data) connected to each other via a MIMO cable. Each node
is connected to a Linux-PC (not shown in the figure) and
the PC is then connected to the network switch. NEAT is
running on an independent PC that is also connected to the
switch and performs live network monitoring. Though the
overall design of AXL is abstracted from the target SDR
platform, here we use USRP N210s along with GNU Radio
modules to achieve the required PHY layer adaptability. The
AXL framework for each node is implemented using Python
programming language on the PC connected to each node. The
advantage of using Python is ease of programming and faster
development turnaround time. The drawback is large delays
incurred by the framework. In future, we plan to move the
implementation of the AXL framework to the kernel space
using C++ programming language. Since the goal of this
work was to establish the feasibility of the proposed cross-
layer testbed, we will show how different algorithms are
implemented and compared to each other’s performance using
the current configuration.

The wireless channel is divided into two non-overlapping
channels called CCC and data channel. In the current imple-
mentation, the CCC is fixed and used by all nodes to coordinate
data channel access and exchange relevant information. This
feature is critical for a distributed network since it allows the
sharing of information between neighbors. This information is
then used by the cross-layer optimization algorithm at each
node for distributed decision making. To prove the feasibility
of using COmBAT, we implement three routing algorithms
namely ROSA, RFA and RDA [3], [10].

ROSA. ROSA is a distributed joint routing and spectrum
allocation algorithm that uses collaborative virtual sensing
(CVS) to gather information from its neighbors to optimize the
overall network throughput. This information is comprised of
the results from spectrum sensing performed at the neighboring
nodes and the instantaneous queue length of each of their
active sessions which are used to calculate a predefined utility
function by the nodes. During each time slot t, each node
chooses the transmission parameters that maximizes the utility
function. The detailed analysis of ROSA is discussed by

authors in [3]. Due to lack of space, we eliminate these
details but try to give an overall understanding of the utility
function used by ROSA. Assuming a node i with neighbors
j ∈ Ni, where Ni is the set of all neighbors of node i. The
Shannon capacity of the link between node i to node j
using frequency f is denoted as Ci j(f). It is essential to
understand that Ci j(f) is dependent on transmit power Pi j(f)
used by the node i. The feasible choice of Pi j(f) is constrained
by two parameters referred to as Pmin(f) and Pmax(f). The
Pmin(f) denotes the minimum transmit power that is required
to ensure that the intended receiver achieves the required bit
error rate (BER). Similarly, Pmax(f) represents the maximum
transmit power that can be used on frequency f , such that
the interference caused by this transmission on neighboring
receiver nodes does not violate the BER constraint of those on
going receptions. In other words, the interference caused, due
to any new opportunistic transmission, should not disrupt any
active communication. Accordingly, a spectrum opportunity is
described as all frequencies f , such that S(f)> 0, where S(f)
is given by,

S(f) = Pmax(f)−Pmin(f). (1)

Therefore, using CVS the node i determines the feasible trans-
mit powers and calculates the achievable Shannon capacity
Ci j(f). Let the queue length of session s at node i be given
by Qs

i . Similarly, using CVS, node i gathers the queue length
Qs

j of the corresponding session s at the neighboring node j.
The differential queue length along with the Ci j(f) is used to
calculate the utility function as follows,

Us
i j =Ci j(f)(Qs

i −Qs
j). (2)

Therefore, the overall objective of every AXL node using
ROSA is to maximize its utility function by choosing the opti-
mal session, next hop, transmit power and frequency spectrum.

RFA and RDA. To perform a comparative evaluation of
ROSA, two other algorithms (RFA and RDA) are described in
[3]. In RFA, the network uses a fixed predefined part of the
RF spectrum but routes the packets through different nodes
depending on the differential queue lengths (i.e. RFA chooses
best next hop depending on differential queue length). There-
fore, RFA does not consider changes in the achievable capacity
which makes it susceptible to external interferes trying to
disrupt the network. On the contrary, RDA performs DSA
and allocates resources such that it maximizes the achievable

Milcom 2016 Track 2 - Networking Protocols and Performance

capacity but fails to exploit the spatial diversity using multipath
routing. Instead, RDA uses a fixed shortest path route for any
chosen destination. This indicates that the throughput of the
network will suffer if any particular node experiences high
congestion.

A. Experiment 1

In this first set of experiments, we evaluate how throughput
of the network varies with increasing number of sessions. The
CCC channel is set to be static and centered at 2.45 GHz. The
data channel is divided into 16 sub-bands each with bandwidth
of 500 KHz each. Therefore, the total spectrum available for
data channel to use dynamically is 8 MHz, which extends
from 2.440 GHz to 2.448 GHz. The bandwidth that can be
used for the data channel are 500 KHz, 1 MHz, 1.5 MHz and
2 MHz. Both the channels use Gaussian minimum shift keying
(GMSK) modulation. Each unique session in these experiments
are defined with respect to its source-destination pairs.

Figure 5 shows how ROSA outperforms RDA and RFA
as the number of sessions increases from one to ten. This
is because ROSA jointly optimizes the routing and spectrum
allocation thereby maximizing the utilization of available re-
sources. RFA has the poorest performance because it has a
fixed spectrum allocation and therefore cannot dynamically
adapt to use different parts of the spectrum. Though RDA has
the ability to use different portions of the spectrum, it is unable
to exploit the advantages of multipath routes. This leads to
bottlenecks in the network while alternate less busy routes are
available to the intended destination. Therefore, in this section
we have successfully implemented AXL, ROSA, RDA and
RFA and utilized the concept of CVS which enable cross-layer
optimization. Thus, we have experimentally corroborated the
advantages put forth by authors in [3].

B. Experiment 2

Time(sec)
60 80 100 120 140 160 180 200 220 240 260

Th
ro

ug
hp

ut
 (k

bi
ts

/s
ec

)

0

20

40

60

80

100

120

140

ROSA
RDA
RFA

Node congestionInterferer switched ON

Fig. 6: Throughput performance in constrained scenarios.

In this section, we will evaluate how different algorithms
adapt under the influence of interferer and traffic congestion. In
this experiment, a session is initiated between node N4 and N6.
The throughput at any instant t in Fig. 6 represents the through-
put measured between (t−60 s) to t s. The external inference is
started at t = 105 s. As we can see in Fig. 6, all the algorithms
are initially affected by the interferer but ROSA and RDA are

able to recover because of their inherent dynamic spectrum
access capabilities. The throughput of RFA deteriorates and
eventually becomes zero. Next at t = 225 s, two sessions are
initiated between N1 to N5 and N7 to N5 to increase congestion
at node N5 (these sessions do not contribute to the throughput).
Figure. 6 shows that the performance of RDA deteriorates due
to the congestion at N5 as RDA is unable to exploit alternate
routes to the destination (N6). On the contrary, ROSA with
its joint routing and spectrum allocation capability survives
both these disruptions and continues to route packets to the
destination.

IV. CONCLUSION

In this paper, we have introduced COmBAT that enables
design, development and evaluation of next-generation cross-
layer technologies. We have implemented three cross-layer
based resource allocation algorithms to demonstrate the adapt-
ability and validity of COmBAT. COmBAT is envisioned to
be the state-of-the-art platform that facilitates transitioning of
novel algorithms and protocols for multi-hop tactical ad-hoc
networks. Therefore, we look forward to collaborate with the
community to help them experimentally validate new cross-
layer solutions and expedite the transition process.

REFERENCES

[1] K. Liu and Q. Zhao, “A Restless Bandit Formulation of Opportunistic
Access: Indexablity and Index Policy,” in Proc. of IEEE Annual Comm.
Soc. Conf. on Sensor, Mesh and Ad Hoc Communications and Networks
Workshops (SECON), June 2008.

[2] Y. Yuan, P. Bahl, R. Chandra, T. Moscibroda, and Y. Wu, “Allocating
Dynamic Time-spectrum Blocks in Cognitive Radio Networks,” in Proc.
of the ACM Intl. Symp. on Mobile Ad Hoc Networking and Computing
(MobiHoc), September 2007.

[3] L. Ding, T. Melodia, S. Batalama, J. Matyjas, and M. Medley, “Cross-
layer Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad
Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 59,
pp. 1969–1979, May 2010.

[4] J. Jagannath, T. Melodia, and A. Drozd, “DRS: Distributed Deadline-
Based Joint Routing and Spectrum Allocation for Tactical Ad-hoc
Networks,” in Proc. of IEEE Global Communications Conference
(GLOBECOM), Washington, DC USA, December 2016.

[5] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross, Arvind, and
H. Balakrishnan, “Airblue: A System for Cross-layer Wireless Protocol
Development,” in Proc. of the ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS), October 2010.

[6] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “En-
abling MAC Protocol Implementations on Software-defined Radios,” in
Proc. of the USENIX Symposium on Networked Systems Design and
Implementation, April 2009.

[7] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless MAC processors: Programming MAC protocols
on commodity Hardware,” in Proc. of IEEE Conference on Computer
Communications (INFOCOM), March 2012.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” ACM Transaction SIGCOMM Computer Commu-
nication Review, vol. 38, no. 2, pp. 69–74, March 2008.

[9] E. Demirors, G. Sklivanitis, T. Melodia, and S. N. Batalama, “RcUBe:
Real-Time Reconfigurable Radio Framework with Self-Optimization
Capabilitites,” in Proc. of IEEE Intl. Conf. on Sensing, Communication,
and Networking (SECON), Seattle, WA, June 2015.

[10] A. L. Drozd, T. Arcuri, J. Jagannath, D. A. Pados, T. Melodia,
E. Demirors, and G. Sklivanitis, “Network Throughput Improvement
in Cognitive Networks by Joint Optimization of Spectrum Allocation
and Cross-layer Routing,” Proc. of NATO Symposium on "Cognitive
Radio and Future Network " (IST-123), May 2014.

Milcom 2016 Track 2 - Networking Protocols and Performance

