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A B S T R A C T   

Wireless signal characterization is a growing area of research and an essential tool to enable spectrum moni
toring, tactical signal recognition, spectrum management, signal authentication for secure communication, and 
so on. Recent years have witnessed several deep neural network models to perform single task signal charac
terization such as radio fingerprinting for emitter identification, automatic modulation classification, spectrum 
sharing, etc. However, with the emergence of 5G and the prospects of beyond 5G communication, there has been 
an increased deployment of edge devices that requires lightweight neural network models to perform signal 
characterization. To this end, a multi-task learning model that can perform multiple signal characterization tasks 
with a single neural network model has been proposed. However, due to the novel nature of multi-task learning 
as applied to signal characterization, there is a lack of a corresponding dataset with multiple labels for each 
waveform. In this paper, we openly share a synthetic wireless waveforms dataset suited for modulation recog
nition and wireless signal (protocol) classification tasks separately as well as jointly. The waveforms comprise 
radar and communication waveforms generated with GNU Radio to represent a heterogeneous wireless 
environment.   

Specifications Table 

Value of the Data  

• Why are these data useful? 

Applied machine learning has been a key enabler for advancing 
various aspects of wireless communication recently [1, 2] and open 
datasets are critical to any supervised learning problem. Wireless signal 
characterization plays a primary role in elucidating the ongoing trans
missions in the spectrum. Typically, such spectrum captures comprise 
heterogeneous wireless transmissions such as typical communication 
waveforms, spurious transmissions, etc. Most open wireless datasets are 
confined to typical communication waveforms. It is important to 
consider a wide range of waveforms representing heterogeneous 
communication environment. For example, spectrum sharing in the 
newly relieved spectrum bands such as 3.5 GHz and 6 GHz require the 
harmonious coexistence of unlicensed users with licensed incumbents. 
The incumbents comprise satellite and radar transmissions. Hence, it is 
important to consider radar waveforms in addition to the typical 

communication waveforms. Additionally, the dataset includes wave
forms subject to realistic propagation and radio hardware uncertainties 
under varying SNR conditions. This is the only known wireless dataset 
suited for multi-task learning [3] which can be used for separate single 
signal characterization tasks as well.  

• Who can benefit from these data? 

Wireless researchers who are involved with applied AI/ML and 
spectrum managers who perform spectrum monitoring and management 
tasks.  

• How can these data be used for further insights and development of 
experiments? 

Spectrum managers and wireless researchers can evaluate their 
spectrum monitoring tool’s capability to detect wide range of radar and 
communication waveforms with our dataset. Our dataset can be used to 
train, validate, and evaluate single task as well as multi-task signal 
characterization neural network models. 
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• What is the additional value of these data? 

Our dataset comprises waveforms subject to radio hardware defects 
and channel effects that are typical of realistic wireless environment. 
Most work in this field resort to identifying the modulation format of the 
waveforms [4, 5, 6, 7]. However, waveforms from multiple wireless 
standards can have the same modulation format and a single wireless 
standard could have multiple modulations. Hence, in addition to iden
tifying modulation scheme our dataset allows for recognizing the 
wireless signal class as well. This is enabled with the multiple labels per 
example in the dataset. For more details, the reader may refer [3]. 

Data 

The dataset is contained in an HDF5 container with key-value asso
ciations per entry. Each waveform is generated under dynamic effects 
over SNRs ranging from -20 dB to 18 dB. For each SNR, at least 659 

Fig. 1. Distinct waveforms in the dataset. The top label of each plot shows its corresponding key in the dataset.  

Table 1 
Dynamic parameter settings  

Parameter Value 

Carrier frequency offset std. dev/sample 0.05 Hz 
Maximum carrier frequency offset 250 Hz 
Sampling rate 10 MS/s 
Sample rate offset std. dev/sample 0.05 Hz 
Maximum sample rate offset 60 Hz 
Number of sinusoids in frequency selective fading 5 
Maximum doppler frequency 2 Hz 
Rician K-factor 3 
Fractional sample delays comprising power delay profile (PDP) [0.2,0.3,0.1] 
Number of multipath taps 5 
List of magnitudes corresponding to each delay in PDP [1,0.5,0.5] 
Range of SNRs in steps of 2 dB -20 dB to 18 dB  

Fig. 2. Dataset collection framework  
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examples not exceeding 700 are created to provide a randomized sample 
set. Each example corresponding to a waveform can be accessed with its 
key (id = {modulation format, signal class, SNR, sample number). The 
dataset collection process is shown inFig. 2. 

Experimental design, materials, and methods 

The waveforms are generated in software with Python scripts uti
lizing the GNU Radio libraries on an Ubuntu 18.04 VM running on an 
Intel Core i5-3230M CPU. The dataset collection process utilizes the 
dynamic channel block [8] in GNU Radio - gnuradio.channels. 
dynamic_channel_model. 
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