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when the signal power is sufficiently high. On the other hand,

LB approach is optimal in the Bayesian sense, but it is known

to be high in computational complexity.
Since each method has its own challenges and advantages,

it is difficult to employ just one method to efficiently clas-

sify multiple modulation formats over different operational

scenarios. To this end, we propose a hybrid approach that

implements both FB and LB modulation classification schemes

to efficiently classify multiple linear and non-linear modulation

formats. Such a hybrid classification approach helps us to

reduce both time and computational complexity.
Most of the previously known approaches in AMC have

been evaluated via simulations under various assumptions.

This is because their hardware implementation is extremely

challenging and time consuming to test their performance

in realistic scenarios [14]. But hardware based evaluation

is critical to understand the practical challenges so that the

AMC algorithms can be refined to ensure successful transition

to commercial and military communication systems. SDRs

provide a flexible platform that can expedite rapid develop-

ment and experimentation [15]. There are very few reported

works that discuss the performance evaluation of AMC using

actual hardware [16]–[19]. In this paper, we design an AMC

technique to efficiently classify multiple modulation formats

and evaluate its performance in practice using SDR.
The major contributions in this paper can be summarized

as follows,

• We propose a decision tree based novel hierarchical

hybrid AMC to classify both linear and non-linear mod-

ulation formats.

• To improve the efficiency of HH-AMC, we empirically

identify the appropriate AMC technique to be employed

at each node of the decision tree in HH-AMC using

parameters such as the time taken to reach a decision

(Tdec) and the probability of correct classification (Pcc).

• We study the practical feasibility of the proposed scheme

using a hardware implementation in SDR and show that
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Abstract—Automatic modulation classification (AMC) is a key 
component of intelligent communication systems used in various 
military and cognitive radio applications. In AMC, it is desired to 
increase the number of different modulation formats that can be 
classified, reduce the computational complexity of classification, 
and improve the robustness and accuracy of the classifier. 
Generally, AMC techniques are classified into feature based (FB) 
and likelihood based (LB) classifiers. In this paper, we propose a 
novel hierarchical hybrid automatic modulation classifier (HH-
AMC) that employs both feature based and likelihood based 
classifiers to improve performance and reduce complexity. As 
another major contribution of this paper, we implement and 
evaluate the performance of HH-AMC over-the-air (OTA) using 
software defined radios (SDRs) to demonstrate the feasibility of 
the proposed scheme in practice. Experimental evaluation shows 
high probability of correct classification (Pcc) for both linear 
and non-linear modulation formats including BPSK, QPSK, 8-
PSK, 16-QAM, 32-QAM, CPFSK, GFSK and GMSK under lab 
conditions.

I. INTRODUCTION AND BACKGROUND

Modern day communication systems backed by SDR tech-

nology aim to become more agile, secure and flexible in

order to maximize the utilization of the available resources to
accomplish various tasks and missions. In such communication

systems, detecting and classifying the modulation format of

the received signal becomes a necessary task for applications

such as authentication, intruder detection, dynamic spectrum

access and adaptive modulation. AMC has been studied for

a number of years and a wide variety of techniques have

been proposed in the literature. The AMC techniques are

broadly classified into two types: feature based (FB) [1]–[7]

and likelihood based (LB) methods [8]–[13]. The advantages

of the FB approach include the ease of implementation, low

computational complexity and a near-optimal performance
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it achieves very good performance.

The rest of the paper is organized as follows. In Sections II

and III we discuss the performance and computational com-

plexity of the LB and FB classifiers, respectively. Using the

performance-complexity trade-off study from Sections II and

III, we propose a hierarchical hybrid classifier in Section IV.

The results of the hardware experiments on the proposed HH-

AMC are also presented in Section IV. Finally, the conclusions

are presented in Section V.

II. LIKELIHOOD BASED CLASSIFIER

In this section, we investigate the performance and com-

putational complexity of the LB classifiers for AMC. This

investigation helps us to identify under what conditions it is

advantageous to use LB classifiers over the other techniques.

An LB classifier computes the likelihood of the received

signal for each modulation format in the dictionary. Direct

computation of the maximum likelihood value is computa-

tionally very complex. It was reported in [11] and [13] that

the computational complexity of the LB approach can be

reduced using the expectation-maximization (EM) algorithm.

Overall, the performance of the LB schemes is known to

be optimal in the Bayesian sense but the LB methods are

computationally intensive. Therefore, it is important to reduce

the time taken to reach a decision (Tdec) for the LB methods

to ensure that the decision is available within the application’s

time requirements.

A. Overview of expectation-maximization (EM) algorithm

Consider a receiver that is observing a linearly modulated

signal that undergoes block fading. The down-converted RF

signal at the receiver can be expressed as,

y(t) = ae jθ ∑
n

Ilg(t −nT )+w(t), 0 ≤ t ≤ T0 (1)

where a > 0 is the channel gain, θ ∈ [−π,π) represents the

channel phase, Il is the lth complex constellation of the trans-

mitted symbol, g(t) is the transmit pulse, To is the observation

interval, T is the symbol duration, w(t) is the additive complex

zero-mean white Gaussian noise process at the receiver with

two-sided power spectral density (PSD) N0/2. In this model,

{Il ,a,θ,N0} are the unknown signal parameters. Among these,

u , [a,θ,N0] is the deterministic unknown parameter vector.

Let S be the number of candidate modulation formats under

consideration, and let I
(i)
l denote the lth constellation symbol

corresponding to the ith modulation format where i∈{1, ...,S}.

The sampled baseband signal at the receiver is given by

y(mTs) = ae jθ ∑
n

Ilg(mTs−nT )+w(mTs), 0≤mTs ≤ T0 (2)

where Ts is the sampling time such that T = cTs for some

positive integer c, and m is a non-negative integer.

The goal is to identify the correct modulation format from

S candidate formats (or equivalently the corresponding hy-

pothesis) based on y. Let Λi(u) represent the log-likelihood

(LL) function of the ith modulation format. The method

of moments (MoM) is used to initialize the values of the

unknown parameters before the estimation process. A detailed

description of the EM algorithm can be found in [11]. For

immediate reference, the steps in EM algorithm are listed in

Algorithm 1.

Algorithm 1 EM based AMC

1: Initiate S parallel threads

2: At each thread i corresponding to each modulation

3: Set stopping parameter ε
4: iter=0

5: Set r=0. Initialize ûi
(0) using MoM

6: Compute Λi(ûi
0)

7: Set r = r+1

8: Compute âr+1

9: Compute θ̂r+1

10: Compute N̂0
r+1

11: Compute Λ̂i(u
(r+1)
i )

12: if Λi(ûi
(r+1))−Λi(ûi

r)> Λi(ûi
r)∗ ε then

13: go to Step 7

14: else

15: ûi = ûi
(r+1) and continue

16: end if

17: Final decision î = argmaxiΛi(ûi)

Before we discuss the performance of the EM algorithm,

we briefly describe the hardware testbed in which all the

experiments were performed.

B. Testbed configuration

The testbed consists of two USRP (universal software radio

peripheral) X300s that are used as transmitter and receiver as

shown in Fig. 1. They are equipped with CBX-120 daugh-

terboards, which cover frequency ranges from 1.2 GHz to

6 GHz with up to 120 MHz of instantaneous analog bandwidth.

The analog-to-digital and digital-to-analog converters on the

motherboard use a 200 MHz master clock and sample at

200 MS/s and 800 MS/s, respectively. The Linux-based host

PC interfaces with the USRP using a Gigabit Ethernet (GigE)

connection.

The SDR setup used to perform classification is similar to

[15], but the capabilities have been significantly enhanced by

adding multiple classification techniques to classify a wider

range of modulation formats at lower computational com-

plexity. Additionally, the algorithms and pre-processor blocks

are implemented in C++, rather than Python, to improve the

computational efficiency. The received samples are processed

by an energy detector to separate actual signal transmissions

from noise. Next, the samples go through an automatic gain

control (AGC) block before being sent to the selected classifier

blocks. The transmitter is set to transmit at a center frequency

of 2.41 GHz. The transmitter’s sampling rate is set to 1 MS/s,

whereas the receiver’s sampling rate is set at 5 MS/s. This

is on the basis of the assumption that when the receiver is

unaware of the transmitter’s sampling rate, it will operate at
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Fig. 1: Software defined radio testbed
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Fig. 4: Pcc & Tdec vs Stopping param-

eter (with 32QAM)
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Fig. 5: Pcc & Tdec vs Stopping param-

eter (without 32QAM)

Iterations

0 20 40 60 80 100 120 140 160

L
o

g
-l

ik
e
li
h

o
o

d
 v

a
lu

e
s

-150

-100

-50

0

50

100

150

BPSK

QPSK

8PSK

16QAM

32QAM

Fig. 6: Log-likelihood values vs Itera-

tions

Transmit Gain of USRP (dB)

0 5 10 15 20 25 30 35

P
ro

b
a

b
il

it
y

 o
f 

c
o

rr
e

c
t 

c
la

s
s

if
ic

a
ti

o
n

 (
P

c
c
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
im

e
 p

e
r 

d
e

c
is

io
n

 (
s

)

0

1

2

3

4

5

6

P
cc

   :Original EM based AMC

Time :Original EM based AMC

P
cc

   :EM with stopping strategy

Time :EM with stopping strategy
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with the proposed stopping strategies.

the highest possible sampling rate to oversample the received

signal. This testbed emulates a realistic flat fading channel in

the lab. All the results obtained with the testbed are averaged

over several instances.

We analyze the performance of the LB algorithm in three

different experimental scenarios. The parameters pertaining

to each experimental scenario are depicted in Table I. Each

scenario evaluates the performance of the AMC algorithm for

different system parameters using the USRPs in the laboratory

setup.

C. Parameters jointly influencing Tdec and Pcc

As mentioned earlier, one major shortcoming of the LB

classifier is the computational complexity. Even though the

EM algorithm reduces the complexity of computing the like-

lihoods, the iterative nature of the EM algorithm results in

a large value of Tdec. So, it is essential to study the trade-off

between Pcc and Tdec. We conducted the following experiments

to understand this trade-off and improve the AMC algorithm

accordingly.

Experiment 1: Here, we determine how Pcc and Tdec vary

as the number of samples (Ns) used per decision is changed.



TABLE I: Parameter values used in experiments

Parameters Experiment 1 Experiment 2 Experiment 3

Number of samples 500 & 200 500 500

Transmit Gain 15 dB 1 dB & 15 dB 1 dB, 15 dB & 31 dB

Receiver Gain 15 dB 15 dB 15 dB

Stopping parameter(ε) 10−6 10−8 to 10−1 10−5

Number of decisions 100 100 100

Figures 2 and 3 depict the change in Pcc and Tdec, respectively,

when Ns is reduced from 500 to 200 in Exp.1. The decrease

in Pcc of the classifier is relatively small when BPSK, QPSK,

8PSK and 16QAM are transmitted; whereas, Tdec decreases by

at least 50% for each modulation. This shows that choosing a

smaller Ns can improve Tdec considerably without drastically

deteriorating the overall performance of the classifier if the

dictionary of modulation formats is known a priori to contain

lower order modulations formats.

Experiment 2: Another important parameter that influences

Pcc and Tdec significantly is the value of the stopping parameter

ε used in the EM algorithm. Fig. 4 (modulation dictionary: {

BPSK, QPSK, 8PSK and 16QAM}) and Fig. 5 (modulation

dictionary: { BPSK, QPSK, 8PSK, 16QAM and 32QAM})

depict the effect on Pcc and Tdec simultaneously as ε changes.

In Figures 4 and 5, the Y-axis on the right hand-side represents

Pcc and the left hand side represents Tdec. As expected, both

Pcc and Tdec decrease as ε increases. However, Pcc and Tdec

decrease at different rates as ε increases. It can be observed

from Figures 4 and 5 that by reducing the value of ε beyond

a certain value, the performance gain achieved in terms of

Pcc is relatively small. On the other hand, Tdec continues to

increase at a considerable rate as ε decreases. Therefore, it

is important to determine an efficient operating point. Such a

point corresponds to the least time taken by the EM algorithm

to make a decision without a significant loss in performance.

In both Figures 4 and 5, we evaluated the performance for

two transmit gains 1 dB and 15 dB corresponding to two SNR

conditions (∼ 20−25 dB and ∼ 30−35 dB respectively). From

this experiment, it is observed that the value of ε to be chosen

as the operating point depends more on the modulation formats

in the dictionary rather than the SNR of the signal itself.

Accordingly, it is deduced that the operating value of ε for

the dictionaries in Figures 4 and 5 can be 10−5 and 10−4,

respectively, regardless of the transmit gain.

Experiment 3: Here, we empirically study the number of

iterations required by the EM algorithm to converge to the

final likelihood value for each modulation format. Due to the

nature of the computations in the EM algorithm [9], [11], the

LL values for each modulation format can be calculated in

parallel. Figure 6 gives the LL values calculated using the

EM algorithm in parallel threads for each modulation format

against the number of EM iterations. Each of these threads

are terminated when their is no significant change in the LL

values. In this example, the LL computation corresponding to

32QAM takes much longer computation time, even though it

does not converge to the highest value compared to the LL

values of the other modulation formats. This motivates us to

investigate an efficient stopping criterion for the EM algorithm

to reduce Tdec without affecting Pcc.

Accordingly, from our experimental observations, we pro-

pose the following exit strategies for the EM algorithm to

reduce the overall execution time. This exit strategy is listed

below.

• Step 1: If the current LL value for BPSK is at least

λ1 times greater than the remaining modulation threads,

then terminate all computations and classify the signal as

BPSK.

• Step 2: If the condition in Step 1 is not satisfied, then

check if the LL value of QPSK is at least λ2 times greater

than that of 8PSK, and the LL value of 16QAM is λ3

times greater than that of 32QAM. If this condition is

satisfied, then stop the LL computations for 8PSK and

32QAM.

• Step 3: Track the LL values of the last running thread and

terminate the thread if it has the highest value. Otherwise,

terminate the thread if it is less than λ4 times the largest

LL value among all the other threads (λ4 ∈ (0,1)).

In this strategy, Step 2 eliminates the unlikely modulation

formats early by exiting the iteration loop. Step 3 terminates

the only thread that is running if the corresponding LL value

is already the highest or if it is small enough to indicate a

very low chance of being the relevant modulation.

In Fig. 7, we compare the values of Pcc and Tdec of the

EM algorithm with and without the stopping strategies for

different transmit gains. As we can observe from Fig. 7,

the EM based AMC with the proposed stopping strategy

reduces Tdec by up to 45% without a significant drop in the

value of Pcc. From several lab experiments we find that these

stopping strategies perform well. The values of the parameters

λ1, · · · ,λ4 computed empirically are listed in Table V

III. FEATURE BASED CLASSIFIERS

FB approaches use features that are extracted from the

instantaneous amplitude, phase and frequency of the received

signal to make a classification decision. Some FB approaches

use signal statistics based algorithms which utilize cumulants

and their cyclic variants [3], [4]. In this section, we discuss

several FB classifiers, their advantages, and performance-

complexity trade-off. Though it is theoretically known that

the values of the features discussed below are different for

different modulation formats, we study their practical range



of values and the feasibility of using them in a practical AMC

hardware.

A. Variance of instantaneous amplitude

The variance of the received signal amplitude is given by,

σ2
amp =

∑Ns
(|y(t)|−µ)2

Ns

, (3)

where |y(t)| is the absolute value of the over-sampled signal

and µ represents the mean of Ns samples. The average value of

σ2
amp for different modulation formats is presented in Fig. 8 for

different values of Ns (64, 128, 256 and 512). The signal was

oversampled by five times and both the transmit and receive

gains were set to 15 dB. It can be observed that this feature

clearly distinguishes FSK signals (CPFSK, GFSK, GMSK)

from the rest of the modulation formats (PSKs and QAMs).

The reason for higher values observed for QAM are due to the

variation in the amplitude of the signal; whereas, oversampling

captures the transitions between different symbols of PSK,

leading to an amplitude variation. Therefore, we identify σ2
amp

as the low-complexity feature to differentiate FSK signals from

PSK and QAM signals.
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50 100 150 200 250 300 350 400 450 500 550

A
v

e
ra

g
e

 V
a

ri
a

n
c

e
 o

f 
s

ig
n

a
l 

a
m

p
li

tu
d

e

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
BPSK

QPSK

8PSK

16QAM

32QAM

GFSK

CPFSK

GMSK

Fig. 8: Variance of amplitude for different modulation formats.

B. Maximum value of PSD of the normalized-centered instan-

taneous amplitude

Now, we consider the maximum value of PSD of the

normalized-centered instantaneous amplitude [1] given as

γmax =
max |FFT (acn(n))|

2

Ns

, (4)

where acn(n) ,
a(n)
ma

− 1, ma = 1
Ns

∑
Ns
n=1 a(n), and a(n) is the

absolute value of the complex-valued received signal. The

normalization by the instantaneous amplitude is required to

compensate for the channel gain. The feature γmax gives us

a measure of deviation of the PSD of the signal from its

average value. Traditionally, γmax has been used to differentiate

PSK signals from FSK signals [1]. In contrast, we use the

average value of γmax to classify CPFSK, GFSK and GMSK.

The minimum, mean and maximum values of γmax computed

experimentally are provided in Table II. It has been observed

that the values of γmax for these signals do not overlap even

at different transmit gains. However, further investigation is

required to study their performance at very low values of SNR.

TABLE II: γmax values of CPFSK, GFSK, GMSK

Modulation CPFSK GFSK GMSK

Tx gain 1dB 15dB 1dB 15dB 1dB 15dB

Minimum 0.36 0.43 6.00 5.83 11.26 11.5

Mean 0.24 0.30 4.43 4.46 8.49 8.55

Maximum 0.13 0.20 3.41 3.31 6.78 6.36

C. Higher order statistics

Features based on higher order statistics are quite use-

ful in classifying amplitude and phase modulated signals at

lower computational complexity compared to LB algorithms.

Cumulants are one such higher order statistics that can be

used to classify these modulation formats efficiently [4], [5].

Cumulants are statistical measures that are known to be invari-

ant to certain distortions in random signals. Hence, they are

very suitable for the purpose of modulation classification. The

cumulant of a random signal is a function of two parameters,

• n: the order of the cumulant

• k: the number of conjugations involved in the computation

of the cumulant (k ≤ n).

The nth order cumulant of the random signal y with k

conjugations can be computed as

Cnk =
No. of partitions in n

∑
p

(−1)p−1(p−1)!
p

∏
j=1

E{yn j−k j y∗k j}, (5)

where n j and k j correspond to the subsets in the partition

j. In our experiments, we use the fourth order cumulants to

distinguish between PSK and QAM signals. Specifically, we

use C42 and C40 for classification. These cumulants can be

evaluated as

C42 = E(|y|4)−|E(y2)|2 −2E(|y|2)2, (6)

C40 = E(y4)−3E(y2)2. (7)

We use the ratio C40/C42 for the purpose of modulation

classification. The ratio avoids the need for any normalization

required due to different signal energies or channel gains.

We evaluate the average value of C40/C42 computed using

2048 received signal samples. The minimum, maximum and

mean values observed for PSK and QAM signals are listed

in Table III at two different transmit gains. The values do

not overlap even while using different transmit gains. This

indicates that a reliable threshold can be set to differentiate

PSKs from QAMs using this feature.
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Fig. 9: Decision tree of the proposed HH-AMC.

TABLE III: Ratio of C40/C42 of PSKs and QAMs

Modulation PSKs QAMs

Tx gain 1dB 15dB 1dB 15dB

Minimum 0.83 0.92 1.27 1.29

Mean 1.05 1.08 1.37 1.37

Maximum 1.36 1.18 1.47 1.45

IV. HIERARCHICAL HYBRID AUTOMATIC MODULATION

CLASSIFIER (HH-AMC)

In this section, we discuss how the AMC techniques imple-

mented and evaluated thus far are used to form a novel HH-

AMC. The decision tree of the proposed HH-AMC is depicted

in Fig. 9. The dictionary of the modulation formats that

we consider include CPFSK, GFSK, GMSK, BPSK, QPSK,

8PSK, 16QAM and 32QAM.

Using the observations made from the experiments con-

ducted thus far, we identified which AMC technique (of

those discussed in Sections II and III) could be used at each

node of the decision tree to improve the overall performance

and efficiency of the AMC system. The first level of the

classifier uses the value of σ2
amp to distinguish FSK signals

from PSK and QAM signals. This is because, the IQ samples

of FSK signals stay on the unit circle, and so, the value of

σ2
amp is extremely low for FSK signals compared to the rest.

The second level of the hierarchical classifier uses two FB

classifiers. The value of γmax is used to classify the FSK

signals as CPFSK, GFSK or GMSK. On the other hand, the

fourth order cumulants are used to differentiate between PSK

and QAM signals. At the final stage of classification, the

computationally intensive EM based ML classifier is used to

identify the modulation order in PSK or QAM signals.

To evaluate the performance of the proposed HH-AMC, we

conducted an experiment using the parameters shown in Table

V. The received signal is oversampled by five times. The

number of samples used per decision for computing σ2
amp,

cumulants, γmax, and for the EM based ML algorithm are

512, 2048, 50× 512 and 512 respectively. The decisions are

recorded in the form of a confusion matrix shown in Table

IV. An ideal confusion matrix would have ones along its

diagonal and zeros elsewhere. This would indicate that all the

classification decisions were correct.

TABLE V

Parameters Values

Transmit gain 1 dB

Receiver gain 15 dB

λ1 2

λ2 and λ3 1.5

λ4 0.5

No. of decisions 100

With the exception of 32QAM, the classification accuracy

Pcc is 0.99 or greater. The only modulation format with

relatively higher number of misclassifications is 32QAM. We

noticed that when the transmit gain is increased to 31 dB,

while keeping every other parameter the same, the value of

Pcc for 32QAM increased from 0.57 to 0.81. Further, When

the sampling rate at the receiver was reduced to 2 MS/s,

the value of Pcc of 32 QAM increased to 0.93. This shows

that high SNR and appropriate sampling rate improve the

classification performance. More importantly, the Tdec for the

overall classification was reduced significantly.

V. CONCLUSIONS

In this paper, we have proposed a novel HH-AMC that

combines both FB and LB classifiers to efficiently classify

signals of the following modulation formats: BPSK, QPSK,

8-PSK, 16-QAM, 32-QAM, CPFSK, GFSK, and GMSK.

To establish its feasibility and practicality, we performed

OTA evaluation on the USRP based testbed. The experiments

showed high values (> 0.99) of Pcc for all modulation formats

except 32QAM. Additionally, a significant improvement was

achieved in the average Tdec of the classifier. In the future,

we will investigate the performance of HH-AMC at lower

SNRs and challenging channel conditions to establish the

practical operational range. We will also investigate efficient



TABLE IV: Confusion matrix of the proposed HH-AMC

HH-AMC Decision Probability

CPFSK GFSK GMSK BPSK QPSK 8PSK 16QAM 32QAM
Tdec (ms)

CPFSK 1 - - - - - - - 145.56

GFSK - 1 - - - - - - 156.31

GMSK - - 1 - - - - - 138.79

BPSK - - - 1 - - - - 144.21

QPSK - - - - 0.99 0.01 - - 184.30

8PSK - - - - 0.01 0.99 - - 242.26

16QAM - - - - - - 0.99 0.01 1916.38T
x

M
o

d
u

la
ti

o
n

32QAM - - - - - - 0.43 0.57 5769.40

low-complexity methods to improve the performance of the

AMC algorithm for higher order QAM and other modulation

formats.
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