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ABSTRACT
Digital twin (DT) technologies have emerged as a solution for real-
time data-driven modeling of cyber physical systems (CPS) using
the vast amount of data available by Internet of Things (IoT) net-
works. In this position paper, we elucidate unique characteristics
and capabilities of a DT framework that enables realization of such
promises as online learning of a physical environment, real-time
monitoring of assets, Monte Carlo heuristic search for predictive
prevention, on-policy, and off-policy reinforcement learning in
real-time. We establish a conceptual layered architecture for a DT
framework with decentralized implementation on cloud computing
and enabled by artificial intelligence (AI) services for modeling and
decision-making processes. The DT framework separates the con-
trol functions, deployed as a system of logically centralized process,
from the physical devices under control, much like software-defined
networking (SDN) in fifth generation (5G) wireless networks. To
clarify the significance of DT in lowering the risk of development
and deployment of innovative technologies on existing system,
we discuss the application of implementing zero trust architecture
(ZTA) as a necessary security framework in future data-driven
communication networks.
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lytics; Online analytical processing.
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1 INTRODUCTION
Evolution of IoT networks has been a key enabler of modern techno-
logical developments including smart grid and city infrastructure,
intelligent transportation, smart healthcare, autonomous industrial
plants, surveillance and intelligent command and control in the
military section, to name a few. Massive number of IoT devices,
potentially distributed over a large-scale physical environment,
lead to a vast amount of data. Hence, intelligent technologies em-
ploying IoT networks face the major challenges of communication,
processing and interpretation of big data.

The fifth-generation (5G) mobile networks provide IoT devices
with low latency and seamless connectivity for handling big data.
Artificial intelligence (AI) and machine learning (ML) engines re-
alize efficient algorithms for processing the data [13, 14]. Digital
twin (DT) technology addresses the interpretation of distributed
datawithin a certain context. It enables extracting relevant informa-
tion about the environment required by the upper-layer decision-
making and control processes. The DT technology thus enables the
realization of the so-called hyper-automation [12].

Recent research trend suggests that DT technology is becoming
a critical part of any large-scale intelligent system that requires real-
time monitoring and interaction with the environment. The role of
DT technology in distributed intelligent systems can be compared
with the software defined networking (SDN) architecture in 5G
networks. In a network architecture based on SDN, the control
plane (traffic management) is separated from data plane (traffic
flow) and realized in a logically centralized control process [26].
Hence, the SDN allows realization of a programmable network
connectivity with dynamic management of user traffic demands.
With implementation on cloud computing platforms, the SDN has
led to realization of carrier clouds in cellular networks which allows
development of softwarized services over existing infrastructure
and hardware equipment.

Similar to SDN, the DT technology enables realization of optimal
decision-making and control processes in a logically centralized
process, possibly deployed on cloud platforms. It separates the
control process (in the virtual space) from the data plane defining
the flow of measurements collected from the environment by IoT
devices and their interaction with the environment (in the physical
space). As a result, DT technology generalizes network connectivity
of SDN and realizes a wide range of programmable functions on
the same physical IoT infrastructure.

Another aspect of DT technology is virtualization of physical
objects and processes. This view is in parallel with network func-
tion virtualization (NFV) in 5G networks. The NFV refers to the
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realization of network functions, including evolved packet core
functions, routers, and firewalls, in software for execution on vir-
tual machines rather than specialized hardware equipment [10].
Hence, it significantly improves the flexibility and agility in de-
velopment and deployment of network core on general purpose
servers and cloud infrastructure. The NFV thus addresses the scala-
bility issue of 5G networks in providing a massive volume of mobile
and IoT devices with connectivity. DT models extend the virtual-
ization of logic functions, as in 5G core, to any physical object or
process. Hence, DT technologies provide a scalable solution for real-
time monitoring and deployment of event detection and control
processes for a massive volume of IoT devices.

An interesting perspective on DT technologies can be obtained
by studying their capability in realizing the concepts of learning
and planning in the context of artificial intelligence. Learning refers
to improving a control policy toward the optimal solution using
direct observations and interactions with a system or environment.
Planning refers to finding the optimal control policy using simu-
lated interactions with the environment according to a distribution
or sample model of the environment. The cycle of direct learning,
model construction and planning can significantly accelerate con-
vergence to the optimal policy. A DT framework is a realization of
the model construction and simulation steps. Hence, a DT frame-
work supports realization of a unified intelligent control process
involving both direct learning and planning.

In this paper, we introduce an intelligent DT framework as a
scalable solution for data-driven modeling and live simulation of
large-scale systems over 5G/6G based IoT networks. The DT frame-
work adopts a layered architecture for distributed deployment on
cloud computing platforms. It also enables the implementation of
AI/ML engines for event detection, predictive models, learning, and
planning for a wide range of services and functions within a unified
framework. We also study development and deployment of intelli-
gent zero trust architectures (ZTA) as a use case of the proposed
DT in enabling rapid prototyping, testing, risk assessment, and in-
tegration of innovative security solutions into existing large-scale
systems.

The rest of the paper is organized as follows. A review of defini-
tions, role, and emerging applications of DT is presented in Section
2. The envisioned architecture of DT for cloud-based deployment
is described in Section 3. Research directions for network security
is discussed in Section 4 and the paper concludes in Section 5.

2 DEFINITION AND ROLE OF DIGITAL TWIN
There are multitude of different, but similar, definitions for DT in
the literature, reflecting adoption of DT in various research domains.
A common definition of DT capturing most of the concepts used
in various applications is “a probabilistic simulation model for an
as-built physical entity (sensor, device, system or process) that
represents the properties (control and configuration capabilities),
state (updates), conditions (interactions with the environment), and
history of the entity in a way that mirrors its life and behavior”. A
comprehensive list of definitions in different applications is given
in [19]. In this paper, rather than the exact definition we elucidate
the main characteristics and requirements of DTs.

Figure 1: Overall concept of digital twin (DT) in separat-
ing control process (in virtual space) from physical devices
through IoT network (data plane).

A DT is a unified high-fidelity simulation model that represents
a physical entity in the past, present, and future. With respect to the
past and the present, a DT in the virtual space mirrors the behavior
of an entity in the physical space. Regarding the future, the DT
predicts accurately the behavior of the entity which is sufficient
for the control process. Further, the behavior of the entity in a
simulated environment (which is not necessarily observed) can be
inferred using the DT models for the purpose of policy exploration.

Constructing a model with the above capabilities requires a bidi-
rectional communication between the physical entity and the DT.
The measurements are collected from the physical space, trans-
ferred through the network, and consumed by DTs in real-time to
update models, and potentially control policies. Control commands
computed in the virtual space of DTs are also sent to the physical
space through the network. This relationship is depicted in Fig. 1
in which the data plane represents the networking mechanism (IoT
network). In fact, real-time data communication and online learning
of models are the distinctive features of a DT framework compared
with traditional static simulation frameworks. The latter includes
models of physical entities in isolation from the environment while
a DT framework additionally learns the environment and updates
the models accordingly.

2.1 Key Capabilities of DT
A DT framework provides a high-level representation of a physical
space useful for the control process. The key capabilities expected
of a DT framework are described below and summarized in Fig. 2.
While these are not a comprehensive list of DT functionalities,
they reveal the main role and motivation for the adoption of DT in
various applications.

The classical role of DT is real-time monitoring of remote and
distributed devices over an IoT network. It provides users with the
current status and historic conditions and a data description for



Figure 2: Characteristics and capabilities of DT in real-time
monitoring, live simulation, learning and planning.

machine-readable application programming interface (API). An-
other important role of DT is realizing a logic function for event
detection. The logic can be a simple threshold detection when the
state of the environment (or device) is described by a scalar variable.
Deep neural networks are used in more advanced DT models for
environments with a high-dimensional state space.

In addition to above roles, an initial motivation for development
of DT was to provide interoperability. This property enabled defin-
ing a unified data description for heterogeneous IoT devices with
a wide range of APIs and data formats. Hence, it could facilitate
device to device communication. A DT framework also provides an
interlinking model that describes relationships between different
types of data collected from many IoT devices distributed over an
environment. The interlinking model presents a high-level under-
standing of the environment dynamics that is consumed by the
control process. Modern DT frameworks are also expected to pro-
vide a simulation environment that models the dynamics of the
entire physical space sufficient for learning the optimal control
policy for a given objective. Hence, a DT framework enables real-
ization of online learning techniques based on planning such as
Monte Carlo tree search (MCTS).

2.2 Role of DT Technology
Real-time monitoring and diagnostics have been a major propellant
of DT technology in cyber-physical systems (CPS) and industrial
IoT (IIoT) [11]. The application of DT in medical CPS has been
proposed as a framework for data collection and communication
with cloud services, for processing and storage, over IoT networks
[1, 16]. Similarly, IIoT systems employ DT to monitor the health of
machinery and detect faults in automated production plants [24].
In more advanced applications, DT has been employed in smart
cities and smart grid systems to model and monitor resource and
energy usage patterns [2, 5, 28].

A popular application of DT is in the field of cybersecurity for
anomaly detection, intrusion detection and prevention systems
(IDS/IPS). In [8], a logic based on deep neural networks uses the DT
models to detect anomaly in the smart grid infrastructure. Similarly,
[23] employs a cloud-based DT as a distributed framework for de-
tecting and mitigating individual and coordinated security attacks
on smart grid infrastructure. In these applications, DT serves as a
model for a large-scale and distributed system that can be used by
upper-layer detection and decision-making processes [15].

Evolution of DT technology with integration of AI/ML algo-
rithms has led to the capability of predictive analytics or prognos-
tics beyond the real-time event detection and diagnostics [17]. DT
is used in [20] to provide a fault prediction model, for the example
of aero-engine bearing. The simulation functions of the DT are
then used to explore the optimal maintenance strategy for iden-
tified faults. Similar concepts and methodology are introduced in
[7] to predict and mitigate the sources of privacy leakage in smart
automotive systems. A DT framework employing a data-driven ML
model of the smart grid and model-based state estimator has been
proposed in [25] for fault prediction in near real-time and taking
preventive actuation.

Interoperability is the key requirement of DT that allows realiza-
tion of hyper-automation and intelligence in large-scale distributed
systems. It has also been a major motivation of DT adoption in
IoT/IIoT. Following this perspective, [4] employs a DT framework
as a networking middleware to facilitate interaction between het-
erogeneous IoT devices using IP-based protocols of the framework
for communication between DT models. The DT also supports de-
ployment of different applications (or services) on the same IoT
platform by controlling communication mechanisms suitable for
the target application.

A DT framework can implement multiple services on the same
physical IoT infrastructure. This can be compared with network slic-
ing in the architecture of 5G and beyond networks. As an example,
the IoT network in a smart grid can be used for learning energy
consumption patterns and demands, modelling electric equipment,
and detecting cybersecurity attacks as different services. These ser-
vices constitute different slices of the DT framework controlling the
smart grid. Deployment, upgrade or update of the services do not
require reconfiguration of the IoT network nor the physical system.
An interlinking model of DT provides a description of the environ-
ment sufficient for the objective of the control process within a
target service.

Real-time learning and decision-making have been the critical
component of modern large-scale and dynamic systems. A promi-
nent example of intelligence in standardized systems is the radio
access network (RAN) intelligent controller (RIC) in 5G networks.
The RIC is the key component of the Open RAN (O-RAN) archi-
tecture for 5G network optimization. The RIC, and specifically AI
engines of the RAN, optimizes critical RAN functions such as re-
source allocation, traffic prediction, mobility management, improv-
ing energy-efficiency and overall QoS and QoE [3]. The simulation
environment of DT provides a platform for realizing policy explo-
ration for intelligent control processes on distributed systems.

The realization of intelligent networking through DT is stud-
ied in [27] for vehicular ad hoc networks (VANET). The (logically)
centralized software-defined controller of the VANET implements
learning-based networking schemes in response to the dynamics
of the vehicles and network environment. These schemes include
adaptive load balancing and scheduling, routing policy exploration,
and flow-table construction. The DT framework provides a network
model for predictive verification of routing policies. More impor-
tantly, the DT is used as a simulation platform (virtual space) for
reinforcement learning that explores and learns the optimal routing
policy before deployment on the real physical network.



Figure 3: A layered architecture of DT framework with hier-
archical deployment on edge, fog and cloud computing.

Resource allocation in IoT networks, supporting a massive vol-
ume of heterogeneous devices (with diverse communication and
computational capabilities), is a challenging task that requires adap-
tive and intelligent resource allocation. The dynamic nature of IoT
networks, with ever increasing number of devices sharing limited
network resources, has pushed online learning methods to model
the network environment and explore resource management poli-
cies. In this regard, [21] employs a digital twin of the edge network
for simulating bandwidth resource allocation and user scheduling.
A reinforcement learning agent uses the simulation environment
for policy learning. Further, a federated learning scheme has been
employed for communication efficiency which also improves data
security and privacy by avoiding sharing of raw data.

DT frameworks have also been employed to model the IoT net-
works (data plane in Fig. 1) used for data exchange. A DT model
of IoT networks is employed in [6] for the purpose of computation
offloading. A reinforcement learning agent uses the DT models
of the network to distribute computation demands of devices for
efficient use of IoT computing resources. Similarly, [18] constructs
a DT model of the network topology for the IIoT to implement a
close-loop network management mechanism. It is not surprising
that the proposed frameworks use a SDN controller, in a similar
way as the SDN in 5G networks, for communicating data between
the physical IIoT network and the virtual instance of DT models.
This shows that the architecture of DT frameworks is converging
to a similar architecture as 5G networks.

3 ENVISIONED DT ARCHITECTURE
The conceptual architecture of our envisioned DT framework is
shown in Fig. 3 that adopts a similar structure as 5G network slicing.
To distinguish from 5G, we refer to this architecture as service slicing.
This terminology is more generic as it refers to control services on
a wide range of physical systems as compared with the networking
function of 5G. The concept of service in the DT can also include

Figure 4:ML-based intelligent DTmodel for current state (em-
ulation) and environment interactions (predictive model).

the networking service of 5G networks. In this perspective, a DT
framework can model a 5G network for learning the optimal control
policy, e.g. for the RIC functions in the O-RAN architecture.

The deployment of control processes based on DT for 5G intel-
ligent controller (RIC) can serve a twofold purpose. First, the DT
framework provides the RIC with simulation environments that
can be used for Monte Carlo planning. This learning paradigm is
not only beneficial in faster convergence of policy learning but also
helps in predictive prevention and event detection. Second, the DT-
based controller can be used for realizing off-policy reinforcement
learning. The RIC implements the behavior policy that controls the
(physical) 5G network. The DT deploys the target policy that is
updated in the virtual space based on the observations from the
(physical) network. The off-policy technique can help in converging
to the optimal policy rather than a sub-optimal solution.

The first layer in the proposed DT framework consists of DT
models of individual physical entities within their local environ-
ment. As shown in Fig. 4, this layer directly communicates with the
physical space comprising of two sets of physical entities. The first
set includes the entities under control which also interact with a
physical environment (making measurements from and/or sending
actuation to the environment). The second physical set includes
the communication infrastructure that can be optionally controlled
within the DT framework.

The DT model of a physical entity, as shown in Fig. 4, consists
of three main components: emulation model, predictive model, and
synchronization engine. The emulation model represents the state
and the behavior (interactions) of the entity in a given environment.
The state can be a scalar value (e.g., battery percentage of an IoT
device) or a multi-dimensional variable (e.g., a vector of geo-spatial
state, data rate, security posture, computational and storage ca-
pacity). The predictive model represents the dynamics of the local
environment interacting with the entity. Given the environment
dynamics, the future states and interactions of the physical entity
can be predicted, thus the name predictive model. The synchroniza-
tion engine (or training in the context of AI/Ml models) updates the
models using measurements from the environment in real-time.

The second layer of the envisioned DT framework in Fig. 3 is
model aggregation. This layer serves a twofold objective. First, it
constructs the DT model of a physical system comprising of smaller
devices or models. The second objective of this layer is aggregating
learning experiences of distributed DTs. Every DT learns a model



for the dynamics of its local environment. While a DT might ob-
serve a limited subset of states of the physical space over a given
time. aggregation of states (models) observed by many DTs can
provide a wider visibility of the space. This is especially impor-
tant for predictive and simulation capabilities of a DT framework.
With learning experience aggregation, a DT model can generate
a high-fidelity simulated experience and state prediction even for
environments that have not been directly observed by a single DT.

Federated learning is a popular paradigm for aggregating experi-
ences of distributed agents for learning a common model under the
constraints of privacy and communication efficiency. The privacy
constraint refers to avoiding sharing of local data available only
to single agents and preventing exposure of their individual learn-
ing (inference) models. Since federated learning does not require
sharing raw data at a (logically) centralized training unit, it can
result in significant communication efficiency while achieving high
accuracy in learning models. Model aggregation via federated learn-
ing (or any plausible communication-efficient distributed learning
technique) is a critical component of the envisioned DT framework.
It is a key function for constructing a high-fidelity simulation and
prediction models based on limited local observations of individual
DTs. Adopting a logically centralized SDN controller for the DT
framework facilitates implementation of federated learning.

At the third layer of the DT framework in Fig. 3, networking
and interlinking models are constructed. As discussed earlier, the
physical space comprises of a set of distributed physical devices
and processes under control (e.g., smart grid) and a data network
infrastructure (e.g., 5G IoT). At this layer of the DT framework,
the two physical systems are represented by two virtual models
(e.g., interlinking model of smart grid and network model of 5G
IoT). The interlinking model provides a high-level representation
of the controlled system based on local observations of physical en-
tities. Several control processes, corresponding to different service
slices, might be associated with different interlinking models. In the
example of a smart grid, one service slice monitors energy usage
patterns and controls load balancing while a separate service slice
implements anomaly detection and cybersecurity controls. The load
balancing service uses an interlinking model that describes load
profile and power distribution system. The cybersecurity service
might employ a model describing grid traffic.

An alternative view of interlinking model is a representation of
spatial information about the environment. This is contrast with DT
models (associated with individual physical entities) that represent
temporal information of the environment state. Graph neural net-
works (GNN) are promising solutions for constructing interlinking
models. The capability of GNN in modeling spatial information has
been commonly used in statistical learning techniques for resource
allocation in wireless networks [9]. An important and desirable
property of GNNs is the permutation equivariance which makes
them capable of exploiting symmetrical properties of the graph and
generalize the learned features from local environments to different
regions of the physical space.

The fourth layer of the DT framework implements a simula-
tion environment consisting of several virtual planes. Every plane
models the physical space at different states. One virtual plane rep-
resents the current state of the physical space and can be used for
online heuristic search as in learning techniques based on Monte

Carlo tree search (MCTS). Additional virtual planes simulate the
physical space used in reinforcement learning based on Monte
Carlo simulations. Off-policy learning and control engines can also
employ dedicated virtual planes for test and verification (cross-
validation) before deploying the target policy over the physical
space. This is a significant advantage of a DT framework that en-
ables verification of control policies with extensive test plans in
real-time without affecting the physical space but with live models
mimicking the actual behavior of the space.

The control and decision-making process in AI-enabled DT
frameworks rely on live ML models of a physical space for optimal
operation. However, emerging adversarial attacks on ML models
can lead to concerns about the robustness of a DT framework in
adversarial environments. Hence, we envision that emerging DT
frameworks would incorporate an assessment service that moni-
tors and evaluates the robustness of underlying DT models against
different attacks, including model poisoning, evasion, extraction
and inference attacks. We call this service the adversarial twin that
employs a virtual plane to simulate adversarial attacks on different
layers of the DT framework and assess the robustness and security
of control processes under different test plans.

The adversarial twin constructs multiple virtual planes in the
simulation environment to assess the robustness of DT models
and the control process to different attacks discussed above. It can
employ adversarial learning techniques to find the weakest link
of the system. In the poisoning plane, the adversarial DT learns
samples that result in largest deviations of DT models. The evasion
plane similarly learns perturbation in measurements that causes
false alarms in decision engines. The extraction plane uses extrac-
tion models to verify successful simulation of the true states in the
physical space. An additional virtual plane simulates the effect of
these attacks on the overall control process. These simulations can
be used as design guidelines to consolidate the robustness of ML
models and monitor adversarial data.

4 RESEARCH DIRECTIONS FOR SECURITY
A DT framework can be considered as a real-time data-driven mod-
eling of a large-scale distributed physical system. A recent body of
research has employed DT to implement model-based event detec-
tion processes for CPS. A prominent example is anomaly detection
and cybersecurity models in smart grids. An interesting capability
of DT in this research area is prediction of future events and fail-
ures. This capability can help realize an extension of event/anomaly
(intrusion in the context of cybersecurity) detection systems from
real-time to the future.

A DT framework can significantly facilitate system planning
and reduce the cost and time of design, development, test and veri-
fication. Important applications include integration of renewable
energy sources with the smart grid and planning of 5G base-stations
for maximizing connectivity in high dynamic environments (e.g.,
VANETs). For the purpose of planning, DT models representing
new physical entities (renewable sources or 5G base-stations) can
be inserted to the framework without installing the actual device
and equipment in the physical space. The planning DT models can
be synchronized with software-based simulators (representing the
design) or even physical twins operating in a lab environment.



The emerging applications of DT can be divided into two broad
categories of implementing distributed control and event detection
processes over network. The latter has been commonly exploited in
cybersecurity applications for intrusion detection and prevention
systems (IDS/IPS). Using DT in realizing distributed control is also
providential for next-generation cybersecurity systems based on
zero trust architecture (ZTA). The problem addressed by a ZTA
is implementation of a distributed mechanism for network access
control (NAC). The core function of a ZTA is a control process for
authorizing accesses to data and network resources, in potentially
untrusted network environments. A review of ZTA, its applica-
tion in beyond 5G networks and the role of machine learning in
implementing ZTA is available at [22].

In classical cybersecurity models, authentication (user/device
identification) provides a trust basis for granting access to a network
resource (based on defined security groups). However, in a ZTA
model, a successful authentication does not grant trust to a user,
thus the name zero trust. Instead, the NAC requires a model for the
security state of the entire network to make decisions on granting
or denying individual accesses (from untrusted users). For this
purpose, the NAC requires real-time monitoring of all network
assets, including users, devices, data, applications, and network
environment. A model for security state of assets, using security
analytics (data-driven modeling), and also the network interactions
(interlinking model), is required for trust evaluation. An automated
control process, in the policy decision point (PDP), uses the security
analytics and results of event detection engines, to grant or deny
access to a network resource. A comparison of these requirements
with the capabilities of DT discussed in Section 2.1 reveals the
moment of DT for rapid and reliable adoption of ZTA.

5 CONCLUSIONS
Digital twin (DT) is becoming an inevitable solution for implemen-
tation of complex control processes for distributed systems with
observations over network. A DT framework paves the path for re-
alization of online learning and planning techniques for exploration
and verification of control policies. Its capability in predictive mod-
eling, based on real-time monitoring and data management, allows
extensive test and verification of control policies before deployment
on the physical space. Hence, it enables deployment of innovative
technologies, with lower CAPEX and OPEX, without paying the
cost of unprecedented failures. In this position paper, we elucidated
unique characteristics of a DT framework that enables realization
of these promises. We established a conceptual architecture for a
DT framework that facilitates implementation of DT on various
systems for realizing critical functions such as event/anomaly de-
tection, data-driven model construction, simulation environments
for heuristic search and online Monte Carlo planning.
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