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Abstract—In this paper, we consider the problem of auto-
matic modulation classification (AMC) with multiple sensors.
A distributed hybrid maximum likelihood (HML) based algo-
rithm in the presence of unknown time offset, phase offset and
channel gain is presented. The proposed distributed algorithm
that employs the generalized expectation maximization (GEM)
algorithm is robust to initialization of unknown parameters,
computationally efficient and require much less communication
overhead compared to performing GEM in a centralized setting.
Simulation and experimental results depict the efficacy of the
proposed algorithm.

Keywords—Modulation classification, hybrid maximum likeli-
hood, generalized expectation maximization algorithm, distributed
decision fusion.

I. INTRODUCTION

The problem of automatic modulation classification (AMC)
is becoming an integral part of various intelligent communica-
tion systems [1]–[3]. While there has been a substantial amount
of work in the literature (please see [2], [3] for an extensive
overview), there are still some important aspects to be further
considered in the AMC problem to fully utilize it in practice.
More specifically, the development of computationally efficient
algorithms to perform AMC in the presence of unknown
parameters is a challenging problem.

Various likelihood-based (LB) AMC techniques have been
proposed in the literature depending on how the unknown
parameters are treated [4]–[8]. However, most of this work
ignores the time offset. In the presence of time offset, feature
based techniques, which are suboptimal, have been developed
in [9]. In a recent work [10], [11], the authors developed a
hybrid maximum likelihood (HML) based approach to AMC
in the presence of unknown time offset, phase offset and
signal amplitude. To find unknown parameters via ML estima-
tion, a computationally efficient numerical algorithm based on
generalized expectation maximization (GEM) was proposed.
The GEM algorithm developed in [10], [11] assumes that all
the observations are available at a central fusion center and
provides promising results when there is a good initialization
technique for unknown parameters available. This is because,
when jointly estimating the unknown parameters with the joint
probability density function, the GEM algorithm gets trapped
in local optima and is highly susceptible to the choice of the
initial values. This leads to poor performance especially in the
mid and high signal-to-noise ratio (SNR) regions. To alleviate
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this problem, we propose a distributed method where we use
the GEM algorithm independently at each node to estimate
unknowns. Once the unknowns are estimated, individual clas-
sification decisions are obtained and fused to perform the final
AMC. This method, which does not require a sophisticated
initialization technique for unknown parameters, is shown to
perform better at medium to high SNR both by simulations and
actual experiments. By estimating unknowns independently via
the GEM algorithm at each node, we gain two main advantages
over joint processing as considered in [11]; (i). While the joint
estimation of unknowns via the GEM algorithm requires a
sophisticated initialization technique especially in the mid-high
SNR regions, the individual estimation of unknowns provides
acceptable results with widely used initialization methods.
(ii). Since not all the raw observations are transmitted to the
fusion center and only a summary is sent, the communication
overhead between sensors and the fusion center is much less
than that in [11].

II. PROBLEM FORMULATION

Let there be L radio receivers (or alternatively we call them
sensors) observing a linearly modulated communication signal
that undergoes block fading. The received baseband signal at
the l-th radio (sensor) can be expressed as

yl(t) = ale
jθl

∑
n

Ing(t− nT − εlT ) + wl(t), 0 ≤ t ≤ T0 (1)

for l = 1, · · · , L where T0 is the observation interval, T is
the symbol duration, g(t) is the transmitted pulse, In is the
nth complex constellation of the transmitted symbol, wl(t) is
the additive complex zero-mean white Gaussian noise process
at the l-th radio with two-sided power spectral density (PSD)
N0/2, al > 0 is the channel gain between the transmitter
and the l-th node, θl ∈ [−π, π) is the channel phase between
the transmitter and the l-th node, and εlT is the residual
time offset at the l-th radio. We assume that the estimation
of g(·), T and the carrier frequency has been accomplished
at each receiver. Without loss of generality, we also assume
εl ∈ [0, 1). In this model, {al, θl, εl}Ll=1 for l = 1, · · · , L
and {In}N−1

n=0 are the unknown signal parameters. Let

ul � [al, θl, εl]
T

represent the deterministic unknown
parameter vector at the l-th node for l = 1, · · · , L and u �
[u1(1), · · · ,uL(1),u1(2), · · · ,uL(2),u1(3), · · · ,uL(3)]

T

where ul(j) denotes the j-th element of ul for j = 1, 2, 3.
Suppose there are S candidate modulation formats under

consideration and let I
(i)
n denote the nth constellation

symbol corresponding to the i-th modulation format
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where i ∈ {1, . . . , S}. Let Hi denote the hypothesis
associated with the i-th modulation format. Further, let
I � [I0, . . . , IN−1]

T and y � [yT
1 , . . . ,y

T
L ]

T where yl

denotes a vector representation of yl(t) and (·)T denotes
vector/matrix transpose. The goal is to identify the correct
modulation format from S candidate formats (or equivalently
the corresponding hypothesis) based on y.

In [11], the authors have considered an HML approach [2]
assuming that all the observation vectors yl’s are available at
a central processing unit. The joint likelihood function of y is
marginalized over the unknown random constellation symbols
In and then maximized over the remaining unknown parameter
vector u. To alleviate the computational complexity of HML
method, the GEM algorithm was used to estimate unknown
parameters. When all the unknowns are estimated jointly via
GEM, it is observed that the performance depends highly on
parameter initialization. In particular, when simulated anneal-
ing (SA) with a coarse grid is used to initialize unknown
parameters, it has been observed that the performance does
not improve and even degrades as the SNR and the number
of sensors increase. However, when the initial values are not
far away from the actual values of unknown parameters, the
GEM algorithm in a centralized setting provides promising re-
sults. Rather than finding sophisticated initialization schemes,
we explore alternative techniques to exploit the presence of
multiple sensor measurements to perform AMC with a given
initialization technique for the GEM algorithm. To that end,
the goal of this paper is to illustrate the performance gain of a
distributed algorithm in which the individual nodes estimate
unknown parameters corresponding to the particular node
independently compared to centralized AMC via GEM. In the
distributed approach, the number of unknown parameters esti-
mated at each sensor is small, and the impact of initialization
of parameters on the overall performance is not significant.
Decision statistics are computed based on individual estimates
of unknowns and individual decisions are transmitted to a
fusion center to make the final decision.

III. DISTRIBUTED AMC VIA GEM

In the proposed algorithm, the deterministic unknown vec-
tor ul for each l is estimated separately at the l-th node and a
test statistic computed based on the estimates is transmitted to
the fusion center to perform final classification. Let ûl

i be the
estimated unknown vector under Hi and γl be a test statistic
computed at the l-th node for l = 1, · · · , L and i = 1, · · · , S.
The l-th node transmits γl to the fusion center so that the final
decision is made as î∗ = f({γl}Ll=1).

Conditioned on I and ul, the likelihood function based on
yl under Hi can be written in the following form [11] (note
that we omit the use of superscript i on ul that corresponds
to Hi when there is no ambiguity):

pi(yl|ul, I) ∝ exp

{
−Eg

N0

N−1∑
n=0

|In|2a2l
}
·

exp

{
2

N0

N−1∑
n=0

al�
{
I∗ne

−jθl

∫ T0

0

yl(t)g
∗(t− nT − εlT )dt

}}
.

(2)

Then the marginalized likelihood function over I based on

yl is given by pi(yl|ul) =
∑

I(i) pi(yl|ul, I
(i))P (I(i)). The

resulting log-likelihood function (LLF) Λi(ul) � ln pi(yl|u)
under Hi at the l-th node based on yl is given in (3)

assuming P (I
(i)
n ) = 1/Mi, where Mi is the cardinality of

the constellation symbol set for hypothesis i. The maximum
likelihood estimate (MLE) of ul at the l-th node under Hi is
given as

ûi
l = argmax

ul

Λi(ul). (4)

To reduce the computational complexity associated with (4),
the GEM algorithm is used. Since the details are given in [11],
we only provide relevant equations here. At each iteration r
of the GEM algorithm, an estimate for ul under Hi is found
as,

ûl
i(r + 1) = [âl(r + 1) θ̂l(r + 1) ε̂l(r + 1)]T with

âl(r + 1) =
1

EgÊl
I(r)

N−1∑
n=0

�
{
Î l∗n (r)e−jθ̂l(r+1)

∫ T0

0

yl(t)g
∗(t− nT − ε̂l(r + 1)T )dt

}
(5)

ε̂l(r + 1) = argmax
εl

N−1∑
n=0

�
{
Î l∗n (r)e−jθ̂l(r)

∫ T0

0

yl(t)g
∗(t− nT − εlT )dt

}
and (6)

θ̂l(r + 1) = tan−1

(
�(ÎlH (r)yl(r + 1))

�(ÎlH (r)yl(r + 1))

)
, (7)

where �{.} and �{.} denote real and imaginary parts respec-
tively and we define yn,l(r) as

yn,l(r) � yl(nT + ε̂l(r)T )

=

∫ T0

0

yl(t)g
∗(t− nT − ε̂l(r)T )dt, (8)

with Îl(r) �
[
Î l0(r), . . . , Î

l
N−1(r)

]T
and yl(r + 1) �

[y0,l(r + 1), . . . , yN−1,l(r + 1)]
T

, in which yn,l(r + 1) is ob-

tained from (8), i.e., y
(r)
n,l � yl(nT+ε̂l

(r)T ). The other relevant
quantities required to compute (5), (6) and (7) are given by,

Î ln(r) �
Mi∑
m=1

αm,l
n (r)Imn (9)

Êl
I(r) �

N−1∑
n=0

Mi∑
m=1

αm,l
n (r)|Imn |2 with (10)

αm,l
n (r) =

exp
(
−|yn,l(r)− âl(r)e

jθ̂l(r)Im|2/N0

)
Mi∑
k=1

exp
(
−|yn,l(r)− âl(r)ejθ̂l(r)Ik|2/N0

) . (11)

The iterations are continued by each node until a stopping
criterion is satisfied.
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Λi(ul) =
N−1∑
n=0

ln

(
Mi∑
k=1

exp

{
2

N0
alRe

{
Ik∗n e−jθl

∫ T0

0

yl(t)g
∗(t− nT − εlT )dt

}
− Eg

N0
a2l |Ikn|2

})
−N lnMi (3)

Once the estimates ûi
l’s are found for each Hi, the

corresponding marginalized log likelihood function Λi(û
i
l)

is computed at each node. After computing individual log
likelihood functions, each node makes a decision on which
modulation format is present and that decision is sent to the
fusion center. Let îl be the decision made at the l-th node
based on

îl = argmax
i

{
Λi(û

i
l)
}
. (12)

The transmitted information by each node is γl = îl and the
final decision at the fusion center on the modulation format is
then given by,

î∗ = fm({̂il}Ll=1) (13)

where fm is a function that yields the modulation format with
largest number of votes over îl for l = 1, · · · , L. It is noted
that, to have an acceptable performance based on this scheme,
the number of sensors should be larger than the number of
modulation formats in the dictionary. The proposed algorithm
is summarized in Algorithm 1

Algorithm 1 Asynchronous AMC with individual estimates

At the each node (radio) l for l = 1, · · · , L
1) Set stopping criterion δ.
2) FOR i = 1, . . . , S
3) Set r = 0, initialize ûi

l(0)
4) Compute αm,l

n (r) from (11), Î ln(r) from (9) for n =
0, . . . , N − 1; m = 1, . . . ,Mi. Compute Êr

I (l) from
(10).

5) Set r = r + 1
6) Compute â(r+1), θ̂l(r + 1) and ε̂l(r + 1) using (5),

(7), and (6), respectively.
7) If stopping criteria is not met, go to Step 4, else set

ûi
l = ûi

l(r + 1) and continue

8) Compute îl as in (12)
9) ENDFOR

At the fusion center
Receive îl for l = 1, · · · , L. Obtain î∗ = fm({̂il}Ll=1) as in
(13).
Final decision is î∗

IV. NUMERICAL RESULTS

In this section, we illustrate the performance of the pro-
posed distributed AMC algorithm and compare it with the
GEM based AMC in a centralized setting as considered in [11].
For numerical results, we assume that g(t) is a symmetrically
truncated RRC pulse, with a roll-off factor of 0.3 and duration
8T . We consider that E{|In|2} = 1, N0 = 1, and al to be a
Rayleigh distributed random variable with scale parameter σ
for l = 1, · · · , L. With these assumptions, the channel signal-
to-noise ratio (SNR) is E{a2l |In|2}/N0 = 2σ2. We further
take T = 1, θl ∼ U [−π, π) and εl ∼ U [0, 1), for l = 1, · · · , L

where U [a, b) denotes uniform distribution with support [a, b).
The observation interval is set as Tp = NT .
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Fig. 1. 8-PSK vs 8-QAM vs 16-PSK vs 16-QAM. Initialization for GEM:
(i) with a given initialization technique with δa = 5, δθ = π/10, δε = 0.1
(ii) SA, L = 5, N = 100

In Fig. 1, we consider a quaternary classification scenario
where the modulation formats to be classified are 8-PSK, 8-
QAM, 16-PSK, and 16-QAM. We plot the AMC performance
in terms of the average probability of correct classification
(assuming all possible formats in the dictionary appear with
equal probability) vs channel SNR. For the GEM algorithm,
we consider two initialization techniques: (i) Initialization
points of unknown parameters are taken as the true values
plus some error. More specifically, we consider that the initial
values for the unknown parameters al, θl and εl can take any
random values uniformly distributed in the regions [0, al+δa],
[θl − δθ, θl + δθ], and [εl − δε, εl + δε], respectively,
for l = 1, · · · , L where δa, δθ, δε > 0 are the maximum
errors for each unknown. These error bounds determine how
close the initial points are to the true values. (ii) Simulated
annealing (SA) as the initialization technique for GEM. For SA
initialization, we consider a coarse uniform grid as considered
in [11].

In Fig. 1, we let L = 5 and N = 100. We also plot the
performance with joint estimation of unknowns based on GEM
in a centralized setting as considered in [11]. As a reference,
we show the performance with having only one sensor. It is
noted that when L = 1, the proposed distributed algorithm
and the one developed in [11] coincide with each other. As
discussed in detail in [11], it can be seen in Fig. 1 that the
GEM algorithm in a centralized setting performs well only
when a good initialization technique is available. With SA
based initialization scheme with a coarse grid, which is a
computationally quite efficient approach for initialization, the
performance of the centralized scheme does not improve and
even somewhat degrades as SNR increases. However, in the
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Fig. 2. QPSK vs 8-PSK when SA is taken as the initialization scheme for
GEM, L = 5, N = 100

distributed algorithm considered in this paper, where unknowns
are estimated independently at each node, the performance
of AMC in the high SNR region is promising. In particular,
in the distributed algorithm, the performance with SA based
initialization is comparable with that when the initial values are
given with a small error (compared to true value). As discussed
to a certain extent in [11], when all the unknowns are esti-
mated jointly in a centralized setting, the GEM algorithm gets
trapped at local maxima in the high SNR region with multiple
sensors leading to poor performance. Thus, in the mid and
high SNR regions, to better exploit the GEM algorithm with
multiple sensors, it is better to perform unknown parameter
estimation independently at each node, as considered in this
paper. Simulation results with the distributed AMC algorithm
based on GEM in classifying QPSK vs 8-PSK is presented in
Fig. 2 where parameter initialization is done via SA. It again
shows the improved performance of the GEM algorithm with
individual estimate of unknowns compared to that with the
joint estimates in the mid-high SNR regions.

It is also worth commenting on the performance in the
low SNR region. As can be seen in both Fig. 1 and Fig. 2,
the performance of the GEM algorithm with joint estimates is
superior to performance with individual estimates in the low
SNR region with SA based initialization scheme. However,
since the performance is not increasing as the SNR increases
when adding more sensors, the use of the centralized scheme
is limited to the cases when the SNR is low or when a ’good’
initialization scheme for unknown parameters is available. The
proposed distributed algorithm is capable of improving the
overall classification performance compared to a single sensor
irrespective of the value of the SNR and its use is significant in
the mid-high SNR regions compared to the centralized scheme.

Fig. 3 shows the performance of the distributed AMC
algorithm as the number of sensors varies when SA is taken
as the initialization technique for GEM. It is noted that the
performance improvement with the addition of more sensors
is not that significant in low SNR regions. In the proposed
algorithm, after the individual decisions are made based on
individual estimates of unknowns, fusion is performed via
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Fig. 4. Experimental set-up with Universal Software Radio Peripheral N210
(USRP N210) and GNU radio platform

the majority rule. Thus, the addition of sensors is exploited
only at the fusion stage of the individual decisions. On the
other hand, if we were to perform AMC jointly via GEM
with all the raw observations (where fusion is performed with
raw observations), the GEM algorithm gets trapped in local
maxima leading to poor performance. Thus, there is a trade-off
between the expected performance improvement and the use of
multiple sensors when AMC is performed via GEM. However,
as the SNR increases, a significant performance improvement
is observed in Fig. 3 as the number of sensors increases.

Experimental validation

In the following, we provide experimental results to il-
lustrate the AMC performance with individual estimates for
unknowns using a simple initialization scheme for GEM.

The algorithm was evaluated on a software defined radio
(SDR) testbed. The testbed comprised of five Universal Soft-
ware Radio Peripheral N210 (USRP N210) controlled using
open-source signal processing software called GNU radio
and two Linux based host PCs. The SDR framework used
to implement the AMC algorithm is described in [12]. The
experimental set-up is shown in Fig. 4 which is the same as
that used for experimental results in [13]. However, fusion and
parameter initialization techniques used in [13] are different
from the algorithm presented in this paper. The power output
of USRP is 15 dBm and the noise figure is 5 dB. The
daughterboard performs mixing, amplification and low pass
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filtering of the signals. The on-board FPGA performs digital
up/down conversion, interpolation and decimation before/after
the dual DAC/ADC. Each USRP was paired with an omni-
directional VERT2450 vertical antennas. One USRP platform
was designated as the transmitter. The transmitter is first set to
transmit 8-PSK symbols and QPSK symbols respectively for
evaluating the performance of the classifier for the respective
modulation scheme. The transmitter (Tx) and receiver (Rx)
gain is set to 1 dB. As shown in Table I we conducted
the experiments with L = 1, 2, 4. We also repeated the
experiments for L = 1, 2 with different combination of USRP
to capture the variability between data collection of hardware
itself (frequency offset, location, noise ect). The probability of
correct classification (Pc) was determined from 100 runs for
each experimental setup. The initial values of unknowns are
selected randomly and unknown parameters corresponding to
each node are estimated independently using GEM. During the
implementation we did not estimate timing offset because we
could not find any degradation in performance that was caused
by timing error. The final classification decision is made by
fusing the individual likelihood functions. As we can see in
Table I, the performance of classifier improves monotonically
as the number of sensors increases. Thus, the experimental
results corroborate theoretical results that show performance
improvement by adding multiple sensors for AMC via GEM
with individual estimates of unknown parameters using a
simple initialization scheme.

TABLE I. PROBABILITY OF CORRECT CLASSIFICATION: QPSK VS

8PSK

Tx L USRP L USRP L USRP
mod = 1 ID = 2 ID = 4 ID

QPSK 0.54 1 0.67 1 & 2 0.97 1,2,3,4
0.89 2 0.93 1 & 3
0.83 3 0.80 3 & 2
0.90 4 0.98 3 & 4

8-PSK 0.31 1 0.79 1 & 2 0.87 1,2,3,4
0.22 2 0.70 1 & 4
0.23 3 0.82 3 & 4
0.56 4 0.67 1 & 3

V. CONCLUSION

We have proposed a distributed algorithm to perform AMC
with multiple sensors in the presence of unknown channel gain,
channel phase and time offset. In the proposed scheme, each
radio (senor node) estimates the unknowns associated with it
independently by maximizing the marginalized LF based on
the GEM algorithm. Then, a summary is transmitted to a fusion
center to make the global decision. The proposed distributed
algorithm is shown to less susceptible for initial values of
unknowns (required by GEM) compared to performing AMC
by joint estimation of unknowns as in [11]. Further, in the
proposed approach, each radio is required to transmit only
a small amount of information to a central processing unit
compared to the amount raw observations. The performance
of the distributed AMC algorithm is evaluated by via both
simulation and experimental results.
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