
Distributed Transmission Control for Wireless Networks
using Multi-Agent Reinforcement Learning

Collin Farquhara, Prem Sagar Pattanshetty Vasanth Kumara, Anu Jagannatha, and Jithin
Jagannatha

aMarconi-Rosenblatt AI/ML Innovation Lab, ANDRO Computational Solutions,
7980 Turin Rd, Beeches Technical Campus Building 1, Rome, NY, USA

ABSTRACT

We examine the problem of transmission control, i.e., when to transmit, in distributed wireless communications
networks through the lens of multi-agent reinforcement learning. Most other works using reinforcement learning
to control or schedule transmissions use some centralized control mechanism, whereas our approach is fully
distributed. Each transmitter node is an independent reinforcement learning agent and does not have direct
knowledge of the actions taken by other agents. We consider the case where only a subset of agents can
successfully transmit at a time, so each agent must learn to act cooperatively with other agents. An agent may
decide to transmit a certain number of steps into the future, but this decision is not communicated to the other
agents, so it the task of the individual agents to attempt to transmit at appropriate times. We achieve this
collaborative behavior through studying the effects of different actions spaces. We are agnostic to the physical
layer, which makes our approach applicable to many types of networks. We submit that approaches similar to
ours may be useful in other domains that use multi-agent reinforcement learning with independent agents.

Keywords: Reinforcement learning, machine learning, multi-agent, communications, scheduling, MAC, protocol

1. INTRODUCTION

Modern communication environments can be large, complex, and dynamic, and thus can pose a problem for
traditional algorithms that are often designed for a particular goal or environment, and may have difficulty scaling
and adapting to new circumstances. Additionally, many traditional approaches rely on a centralized controller,
and without such a controller may fail to find optimal performance if a distributed approach is employed. Machine
learning and reinforcement learning approaches have been proposed as a promising alternative as they may learn
to find solutions even in for extremely challenging complex and dynamic environments.1 Herein, we present
a Multi-Agent Reinforcement Learning (MARL) approach applied to the problem of distributed transmissions
control.

Our distributed approach uses individual agents to control the transmission of devices (if and when to
transmit), providing a solution to transmission control and medium access control tasks where a centralized
control mechanism is infeasible or disadvantageous. Distributed approaches have the advantage of limiting
communication overhead and may be more extensible in terms of the number of devices and spacial range, as
a centralized bottleneck is avoided and devices do not need to be near a centralized controller. Additionally,
in some systems, especially large or sensitive systems, a centralized approach may not be feasible in terms of
security and robustness. For example, an attack on a centralized mechanism may cause the entire network to fail.
Communication settings where this distributed approach may be advantageous include tactical ad hoc networks,
sensor networks, device-to-device communications, and various other internet of things systems.

Moving away from centralized approaches poses some technical challenges. In general, network-level planning
is easier with a centralized mechanism. From a reinforcement learning (RL) perspective, if centralized mechanism

Further author information: (Send correspondence to C.F.)
C.F.: E-mail: farquhar13@gmail.com
J.J.: E-mail: jjagannath@androcs.com

controls each node’s actions and has complete access to all the nodes’ observations and rewards, then the problem
reduces to a classical Markov Decision Process (MDP) and single-agent solutions can be used.2

We consider the setting with n transmitters represented as individual reinforcement learning agents. The
environment is such that only a limited number of the agents are able to successfully transmit concurrently
due to the friendly interference caused by transmitting. It is then the task of the agents to learn when to
transmit. We devise a general form for the action space and analyze the effects of different actions spaces
sizes on the performance in terms of network throughput and fairness. By tailoring the action space to the
environment we see that the agents are able to learn cooperative transmission patterns that lead to efficient and
fair performance. Based on our analysis, we choose action spaces that perform well and compare them against
CSMA-style benchmarks. We find that our RL agents often outperform the benchmarks in terms of throughput
and fairness.

We test our approach in a custom simulation environment based on OpenAI Gym.3 Our environment is open
source and is freely available for download on GitHub with a link provided in Appendix A.

2. RELATED WORK

A similar objective to ours is explored in Ref. 4 from the perspective of domain-agnostic cooperative RL. The
work proposes a method for optimizing the trade-off between fairness and efficiency in MARL, which is analogous
to our desire to optimize optimize fairness and throughput. However, the agents are allowed to share information
with other local agents. In the context of communications systems, however, this information sharing may induce
unwanted overhead, and in our approach we do not rely on information sharing.

An adjacent area or research involves learning to communicate for RL agents — that is, learning how to
share information so that agents can cooperatively achieve some goal.5,6 While this goal may not be related to
communications systems per se, there is an inherent scheduling component for the information sharing which
is similar to our task. In particular, Kim et al.6 considers an environment with bandwidth and medium access
constraints. While these works use distributed execution, they rely on a centralized training mechanism. In
contrast, in our work we focus on optimizing communications systems using fully distributed MARL.

Ref. 7 investigates how a deep reinforcement learning agent can learn a Medium Access Control (MAC)
strategy to coexist with other networks that use traditional (not machine learning–based) MAC algorithms. In
some ways, it may be easier to learn to coexist with a traditional MAC algorithms, as the algorithms may have
a certain structures, regularities, or periodicities that can be learned by the agent. In this paper we focus purely
on multi-agent scheduling, where all agents have the same action spaces and it is difficult to predict a priori what
patterns may emerge.

Despite not using a machine learning approach, perhaps the closest to this paper is the recent work of
Ref. 8 which proposes an algorithm for distributed, fair MAC scheduling and additionally provides theoretical
guarantees for service disparity.

3. PROBLEM FORMULATION AND APPROACH

We consider scenarios with n agents acting as transmitting devices (nodes in a wireless network). The transmis-
sion medium is limited such that only a threshold number, k, of agents can successfully transmit at the same
time. The threshold is uniform for all agents: if more than k agents transmit on the same step, then all of
the transmissions are unsuccessful at the respective receivers. Given this threshold behavior, we are agnostic to
the PHY-layer. With k > 1 we can model an abstracted CDMA PHY-layer where k can be interpreted as the
spreading factor. For k = 1 we can model many other systems that use an OFDM-based PHY-layer.

The agents may only transmit once on a given step. We leave the definition of a transmission abstracted so
that a transmission could represent either the transmission of a single packet, multiple packers, or some number
of bits.

DQN.py

threshold_env(gym.Env)

agent.py

Action
At

reward
Rt

St+1

Rt+1

state
St

Figure 1: Depiction of the flow of information between our software during the reinforcement learning process.
The threshold env inherits from gym.Env, the base class for OpenAI Gym, and serves as the environment in which
the agents act. In agent.py the agents are defined using a DQN model. State, reward, and action information
(St, Rt, and At) are passed between the environment and the agents. Since this is a multi-agent setting, St, Rt,

and At are lists containing the respective information for each agent. E.g., St = [s
(1)
t , s

(2)
t , s

(3)
t , ...] is a list of the

states for each agent at time t. Figure adapted from Ref. 9.

3.1 Simulation Software

We provide a software platform to model the interaction of agents in a threshold-limited communication setting.
A link to view or download the code can be found in Appendix A. There are two primary components to the
software, the first is agent.py where the agents’ RL models are defined and used to select actions, and the second
is the simulation environment, called threshold env, which is built on top of OpenAI Gym and inherits from
the gym.Env base class. The primary functionality is implemented in the step method, which advances the
simulation. The step method takes a list of actions (one action per agent) as input. The actions are performed
in the environment and the agents move into a new state and receive some reward. The information regarding
the new states and the reward is then returned by the step method to be used by the agents’ RL models in the
agent.py file. The information flow between our software is depicted in Figure 1.

While we use our custom environment in this paper as it is suits our desired level of abstraction, our approach
can easily be tested using other dedicated wireless communication simulators if one wanted to more finely model
the particularities a specific communication system. Internally, we have tested our approach with ns3-gym10 and
found the results to be consistent with our custom environment.

3.2 RL Background

A general reinforcement learning problem is formulated as a Markov Decision Process (MDP), which may be
represented by the tuple (S,A, P,R) where S is the set of states an agent may encounter, A is the set of actions
an agent can take, P (st+1|st, at) is the state transition function which follows the Markov Property and gives
the probability that the agent’s next state is st+1 given that the agent is in state st and takes action at, and R
is the reward function which outputs a real number. It is then the task of an agent to maximize it’s long-term
reward over many steps.

Our environment can be classified as a multi-agent, Partially Observable Markov Decision Process (POMDP).
Each agent is taking actions regarding if and when to transmit. The actions taken by an agent are not directly
communicated to the other agents in the environment. However, the other agents can indirectly observe the
effects of the these actions by measuring the overall level of interference. In the following sections, we define the
state space, action space, reward function, and the RL model.

3.3 State Space

An agent’s observation of their state consists of four features (t, s, i, b) which are described below.

• Whether the agent transmitted, t ∈ {0, 1}

• Whether the transmission was successful, s ∈ {0, 1}

• Interference-sensed (normalized), i ∈ [0, 1]

• buffer size (normalized), b ∈ [0, 1]

If an agent did not transmit then s is automatically set to 0. The interference-sensed feature is normalized
by dividing the number of transmissions from other agents by the number of other agents. We constrain the
interference-sensed feature, i, such that an agent cannot transmit and sense on the same step, as in a realistic
system its transmission would dominate any local sensing mechanism. If an agent transmits, then i is set to 0.
Buffer size can be thought of as representing how many packets are waiting to be transmitted by an agent. The
buffer size feature, b, is normalized by setting a maximum buffer size.

3.4 Action Space

We provide a structure for the action space. In this work, we test actions spaces of different sizes, but they all
follow the same form. Effectively, the agent has the choices: do not transmit on the next step, transmit on the
next step, or wait for certain number of steps and then transmit. The encoding for a selected action ai is shown
below.

• a0 → Do not transmit

• a1 → Transmit on the next step

• a2 → Transmit after one step

• a3 → Transmit after two steps

• a4 → Transmit after three steps

• ...

A transmission lasts for one simulation-step. If an agent’s buffer is zero, then the RL model is not used and
the agent takes no action as there are no packets to be transmitted, and thus no decision to be made. Since
we consider multi-agent settings, the agents will be making decisions asynchronously as some actions last over
multiple steps. In section 4.1 we analyze the performance of different action space sizes. An action space of size
m, (|A| = m), is defined as A = {ai}m−1

i=0 .

3.5 Reward Function

The reward for function for single-step actions is shown below.

R =

1 successful transmission

−1 unsuccessful transmission

0 no transmission

(1)

For multi-step actions, the single-step rewards are averaged over the number of steps the action acts over.

3.6 RL Model

We use the vanilla Deep Q-Network (DQN) algorithm as the RL model for each agent. At a high level, the
algorithm consists of a neural network that takes an agent’s state observation as input and outputs an estimate
of the Q-value for each possible action. The Q-value represents the long-term sum of rewards an agent will receive
if they take a particular action in a particular state and then from that point on continue to act optimally with
respect to the Q-value estimates.

Unless the agent selects an action randomly according to it’s exploration mechanism, the agent will select the
action at that corresponds to the maximum Q-value. After taking the step in the environment where the agent
performs the action, the transition (st, at, rt, st+1) is saved to the agent’s experience replay memory (assuming
a single-step action). The experience replay memory is sampled during training. If an agent selects an action
that extends over multiple steps, the state at the time of the decision, st is saved, and the per-step reward is
averaged over the duration of the action. For example, if an action taken at time t extends over n steps, then
let r̃ = 1

n

∑t+n−1
i=t ri, and the transition that is saved is (st, at, r̃, st+n).

If an agent’s buffer size is zero, then the RL model is not used since there are no packets to send and no
decision to make; i.e., the agent takes no action and no transition is saved to the agent’s memory.

The DQN hyperparameters are described in Appendix B and the code is provided in the repository linked to
in Appendix A.

4. EXPERIMENTS AND RESULTS

In this section we describe a number of experiments and analyze the agents’ performance. We start in Sec. 4.1
by investigating the effect of the action space on throughput and fairness for different number of agents and
different threshold values for the maximum number of concurrent successful transmissions, k. Based on these
results, we provide an action space recommendation that we use for the remaining experiments where we compare
agent performance versus CSMA-inspired benchmarks in Sec. 4.2. Lastly, in Sec. 4.3, we examine the how the
advantage the RL agents provide relates to an agent’s ability to manage its buffer size for different buffer rates
(source rates). All experiments are run 3 times for 10,000 steps and the results shown are averages over the 3
runs.

Throughput is calculated as the number of successful transmissions per step. Since an agent may only transmit
one packet per step, the maximum possible network throughput is k. For greater clarity, the throughput data
are smoothed over 100 steps. The plotted value at time step t is the average over the 100 values preceding time
step t. The fairness at time t is calculated using Jain’s fairness index as

Ft =
(
∑n

i=1 x
(i)
t)2

n
∑n

i=1 x
(i)
t

2
, (2)

where n is the number of agents and x
(i)
t is the smoothed throughput for agent i at time t. A value of 1

represents maximum fairness.

4.1 Action Space Analysis

We test a range of action space sizes for 2, 4, and 10 agents. We also vary the threshold, k, for additional tests
with 4 and 10 agents. The buffer rate is such that the buffer is incremented on every step and is uniform for all
agents, so the agents always have packets to transmit.

Results for throughput and fairness for 4 and 10 agents with k = 2 are show in Table 1. For 4 agents
throughout is maximized with an action space of size |A| = 3; fairness is above 0.99 for 3, 4, and 5 actions. For
10 agents the highest throughput value is achieved with |A| = 7. It is interesting to note that the second best
throughput is achieved with |A| = 2, but the corresponding fairness is very poor; fairness is near or above 0.9
for |A| ≥ 6, with the exception of 9 actions, but this may have been due to unlucky sampling as the standard
deviation is much larger than that for any other action space size. To manage the trade-off between throughput

Throughput, k = 2 Fairness, k = 2

No. of Actions 4 Agents 10 Agents 4 Agents 10 Agents
2 Actions Mean = 1.23383

STDEV = 0.05380
Mean = 1.13013
STDEV = 0.09343

Mean = 0.79449
STDEV = 0.01814

Mean = 0.38081
STDEV = 0.04988

3 Actions Mean = 1.84297
STDEV = 0.00767

Mean = 1.05710
STDEV = 0.05481

Mean = 0.99914
STDEV = 0.00010

Mean = 0.53656
STDEV = 0.01878

4 Actions Mean = 1.29135
STDEV = 0.02454

Mean = 1.00863
STDEV = 0.06923

Mean = 0.99897
STDEV = 0.00073

Mean = 0.71488
STDEV = 0.02333

5 Actions Mean = 1.14423
STDEV = 0.26474

Mean = 1.04642
STDEV = 0.06590

Mean = 0.99289
STDEV = 0.00988

Mean = 0.70399
STDEV = 0.16237

6 Actions Mean = 0.90587
STDEV = 0.07312

Mean = 1.05044
STDEV = 0.19130

Mean = 0.98259
STDEV = 0.01012

Mean = 0.89317
STDEV = 0.04956

7 Actions Mean = 0.86968
STDEV = 0.05590

Mean = 1.21009
STDEV = 0.17026

Mean = 0.96761
STDEV = 0.02630

Mean = 0.91798
STDEV = 0.02299

8 Actions Mean = 0.86249
STDEV = 0.06013

Mean = 1.10272
STDEV = 0.23757

Mean = 0.92256
STDEV = 0.00266

Mean = 0.91769
STDEV = 0.06550

9 Actions

–

Mean = 1.00109
STDEV = 0.07765 –

Mean = 0.73018
STDEV = 0.33294

10 Actions

–

Mean = 0.91435
STDEV = 0.12382 –

Mean = 0.92223
STDEV = 0.05944

11 Actions

–

Mean = 0.96161
STDEV = 0.03941 –

Mean = 0.94661
STDEV = 0.02341

Table 1: Average and standard deviation of network throughput and fairness for 4 and 10 agents with k = 2.
The values are computed from the last 1,000 steps out of a 10,000 step training run, and are averaged over 3
runs.

and fairness for 10 agents, a larger actions space shows better results, as this gives good results for fairness and
does not (significantly) diminish throughput performance.

The size of the action space clearly has an effect on throughput and fairness. This fact is both obvious and
interesting. An action space of size 2 amounts to a decision of whether to transmit. Larger action spaces concep-
tually change the decision to include: how long to wait before transmitting. It may not have been predictable a
priori that extending the action space in this way would have such an effect as, fundamentally, on each step an
agent is either transmitting or not, and each action ai for i > 0 only schedules one transmission (with a0 being
a single-step decision not to transmit).

Viewed another way, extending the action space is a way of biasing the set of actions so that the agents
have a lower probability of miscoordination. Ref. 11 defines coordination in the context of MARL as “the
ability of two or more agents to jointly reach a consensus over which actions to perform in an environment”,
and miscoordination penalty is incurred when the joint actions lead to a lower reward. In our setting, we can
define miscoordination to mean when more than k agents transmit on the same step, giving a reward of −1 for
all agents that transmitted.

For example, if k = 2 and actions were selected uniformly at random for 10 agents with |A| = 2 (a = 0
meaning “don’t transmit” and a = 1 meaning ”transmit”), then probability of miscoordination (of more than 2
agents selecting a = 1 on a given step) is, by the binomial distribution,

P (miscoordination) = 0.510
10∑

i=k+1=3

(
10

i

)
≈ 95%. (3)

With the assumption of randomly selected actions, as the action space increases the probability of miscoordi-
nation decreases. More details and a proof of this can be found in Appendix C. However, as the size of the action

space, |A|, keeps increasing, eventually a lower probability of miscoordination would also result in diminishing
throughput. Of course, our agents do not select actions uniformly at random, but still, this theoretical analysis
implies that there is some optimal middle-ground for |A|.

Additional tabulated results are displayed in Appendix D, which together with Table 1 help inform us as
we formulate a heuristic for finding an optimal action space. We make note of some trends emerging from the
empirical data. For example, the fairness data for k = 1 in Appendix D shows a general trend that fairness
increases and then may plateau as the number of actions increase. For throughput, we generally observe that as
we increase the number of actions throughput increases until a point, and then may decrease. This trend can be
seen clearly for for 4 agents with k = 2 agents in Table 1; and for 2 agents with k = 1, and 10 agents with k = 5
both in Appendix D; incidentally, it is when |A| = 3 that throughput is maximized in all the aforementioned
examples, but we conjecture that the reason for this is not caused by an inherent property of the 3-action space.
Rather, for each example, 3 = n

k + 1 where n is the number of agents.

Based our empirical results we recommend the following heuristic for choosing the size of the action space
which we choose to promote good performance for both throughput and fairness; we create A such that

|A| =
n

k
+ 1. (4)

In some cases, like for 10 agents in Table 1, the throughput is high for the smallest action space, but when
this occurs the fairness is unacceptably low. The same behavior can be observed for 10 agents with k = 1 in the
appendix. In these cases as well, using our heuristic we find a much more equitable trade-off between throughput
and fairness.

4.2 Benchmarking

Using our heuristic in Equation (4) to set the size of action space, we compare the performance of our RL agents
against three distributed CSMA-inspired benchmarks.

CSMA (Carrier Sense Multiple Access) is a MAC protocol used in Wi-Fi systems; the premise is that a device
will sense the spectrum to see if the transmission medium (channel) is clear. If the channel is clear, then the
device may transmit. If the transmission is unsuccessful, because, for example, another device also transmitted
at the same time and caused interference, then the device randomly chooses a number of steps, x, in some
predefined interval, {z ∈ Z : 0 ≤ z < X}, to wait before attempting to transmit again. We’ll refer to x as a
backoff timer and X as the backoff–upper-bound.

We consider these algorithms reasonable to compare against for benchmarking as our action space may be
viewed as doing something similar: giving the agents the ability to choose how long to wait before attempting a
transmission.

We call the three algorithms we use for benchmarking exponential CSMA, p-persistent CSMA, and p-
persistent. For exponential CSMA, we initially set X = 2; if the a transmission is unsuccessful, a new x is
randomly selected and the new backoff–upper-bound is set to 2X. When the agent has a successful transmission,
the backoff–upper-bound is reset to X = 2. In p-persistent CSMA, X is a constant and it set to the size of
the action space |A| that the RL agent is using in the benchmarking experiment. The p-persistent algorithm
works the same as p-persistent CSMA, with the only difference being that a spectrum reading that shows no
transmissions is not required as a precondition to transmit, as it is for the other two algorithms.

Figure 2 shows plots for throughput and fairness for an experiment with 10 agents, k = 5, and as in the
previous section, the agents’ buffers are incremented on every step. Using Equation (4) we set the size of the
action space, |A| = 3. We see that our RL agents achieve nearly optimal network performance, as a fairness of 1
is optimal, and a network throughput of k is optimal. The network throughput for the benchmarking algorithms
are comparatively low. We see that 3-persistent CSMA produces the lowest throughput, while the 3-persistent
algorithm does better, which is likely due to the fact that it does not require sensing that the spectrum is clear
before transmitting. Exponential CSMA does better still in terms of throughput, although still far off of the
performance of the RL agents, but its corresponding network fairness is poor. As noted in Ref. 8, the traditional
distributed heuristic algorithms based on CSMA may suffer from unfairness, which we observe here. Five of the

(a) Throughput for 10 agents, k = 5, |A| = 3. (b) Fairness for 10 agents, k = 5, |A| = 3.

Figure 2: Network throughput and fairness with the performance for the RL agents and the benchmarking
algorithms plotted against each other. The plotted data is the averaged over three runs.

Exponential CSMA agents capture the channel, as they can all successfully transmit with k = 5, and this causes
the other five agents’ backoff–upper-bound to continually and exponentially increase. The network fairness for
the RL agents and 3-persistent, are both quite good with the best fairness being achieved by the RL agents. The
high value for network fairness demonstrates that despite each RL agent being controlled by a distinct model
and trying to optimize its own reward, our distributed approach can still lead to cooperative and fair network
behavior.

Additional throughput and fairness benchmarks for 2, 4, and 10 agents with varying values for k can be found
in Appendix E. We see that in almost all cases the RL agents outperform the CSMA-inspired benchmarks in
terms of throughput. The only time this is not the case is for 10 agents, k = 1, |A| = 11, where exponential
CSMA has higher throughput but much worse fairness. Overall, we take this as confirmation that our heuristic
for choosing the size of the action space works well to optimize throughput and fairness separately and to provide
a reasonable trade-off when necessary.

4.3 Buffer Experiments

In the previous experiments the agents’ buffers were incremented on every step, so each agent would always have
packets to transmit. While this was useful to determine how the agents would act cooperatively even when all
agents had packets to transmit, in many real-world communications systems the information demands are not
as stringent or as constant. In the following sections we test the RL agents in settings with less stringent and
heterogeneous buffer rates and analyze the performance in terms of throughput, fairness, and how well the agents
are able to manage their buffers. In real-world systems, if a buffer reaches its maximum size then information
loss or bottlenecks may occur. We compare against the p-persistent benchmarking algorithm as in the previous
section it showed higher throughput than p-persistent CSMA and better fairness than exponential CSMA. We
test with 4 agents with a maximum buffer size of 100 units, k = 1, and set |A| = 5 according to Eqn. (4).

In the first experiment we use a homogeneous buffer rate and increment each agent’s buffer every 8 steps. Plots
for network throughput and the buffer size for one of the agents are displayed in Fig. 3. The network throughput
in Fig. 3a is clearly, though only slightly higher for the RL agents than for the 5-persistent algorithm. Despite
there not being a large gap in throughput, the RL agents do far better at managing their buffer, as can be seen

(a) Network throughput (b) Normalized buffer size for Agent 1

Figure 3: Network throughput and normalized buffer size of Agent 1 for a setting where the agents’ buffers are
homogeneously incremented every 8 steps. There are 4 agents with k = 1 and |A| = 5. Network throughput is
averaged over 3 runs.

in Fig. 3b: both buffers rise initially, but as the training progress the RL agent learns to transmit effectively with
the other agents so that the buffer stays low, while the buffer gets maxed-out with the 5-persistent algorithm.

Next, we devise an experiment where agents have their buffers incremented heterogeneously. We increment
the buffers every (2, 5, 8, 10) steps respectively for each agent. (E.g., agent 1’s buffer is incremented every 2
steps, agents 2’s buffer is incremented every 5 steps, and so on.) In Fig. 10 in Appendix F, the normalized buffer
sizes for each of the agents are plotted. For both the RL and 5-persistent approaches, Agent 1 is not able to
prevent its buffer from being maxed-out: the buffer rate is too demanding. For Agent 2, both approaches lead to
the buffer being maxed-out initially, but about halfway through the simulation, the RL agent learns to transmit
effectively enough so that its buffer stays under maximum buffer size. The buffer sizes for Agent 3 are similar to
those in the homogeneous buffer experiments, which makes sense as the buffer rate (incremented every 8 steps)
is the same: the RL agent’s buffer rises initially, but it quickly learns to act such that the buffer is kept low while
for the 5-persistent algorithm the buffer quickly maxes out. For agent 4, the RL agent handles this buffer rate
with ease, and while the 5-persistent approach manages to slow the increase of the buffer size, the buffer size is
still maxed-out at the end (or is at least very close to being maxed-out).

These experiments show our RL approach and heuristic for selecting an action space continues works well
even when applied to settings with different, and potentially heterogeneous, information demands.

Additional plots for throughput and fairness for both buffer experiments are shown in Appendix F.

5. CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Summary

In this work we presented a distributed MARL approach for transmission control (an MARL-based MAC multiple
access method): we formulated the RL agents, theoretically and empirically evaluated the action space to come
up with a heuristic for selecting the size of the action space, benchmarked against CSMA-style algorithms, and
tested performance with different buffer rates. Overall, the RL agents outperform the benchmarks in terms of
throughput, fairness, and the ability to manage their buffer. We share the open source code for the custom Gym
environment, RL agents, and the algorithms used for benchmarking through the link in Appendix A.

5.2 Discussion

The results of the action space analysis in Sec. 4.1 show that sometimes the same reinforcement learning problem
can be formulated with different action spaces that are functionally equivalent (meaning that any trajectory of
actions that is possible using one action space is also possible in the other), and yet some actions spaces will be
better at maximizing an objective. Equation (4) provides a heuristic for choosing the size of the action space
given the structure for the action space formulated in Sec. 3.4. Choosing the size of the action space in this way
can be viewed as tailoring the action space to the problem within a general structure. Selecting a good action
space creates a bias towards selecting actions that are likely to create successful patterns of transmission at a
network-level. Our method of theoretically analyzing the action space with the assumption of randomly selected
actions combined with empirical testing could be used in other cases where there is freedom in choosing an action
space.

The benchmarking in Sec. 4.2 showed that the RL agents outperform the CSMA-style algorithms, and that
this performance gap is consistent for varying number of agents and different threshold values for k. The fact that
the benchmarking algorithms did not perform well indicates some of the shortcomings of traditional distributed
algorithms for transmission control, namely, mediocre throughput performance, or good throughput performance
but at the expense of fairness. Meanwhile, the RL agents performed well not only in terms of network throughput,
but also in fairness demonstrates the power of a distributed MARL approach, where even though the agents act
individually to maximize their reward, cooperative behavior can emerge that maximizes network metrics as well
if the MARL approach is constructed properly.

The advantage provided by the RL agents was demonstrated further in the buffer experiments in Sec. 4.3.
In these settings the RL agents were often able to keep there buffer sizes low and prevent the their buffers from
reaching the maximum size. In real-world systems if an agents buffer were to be maxed-out that could represent
information loss or a major bottleneck in the network, so the ability to keep buffer sizes low confers significant
value. These experiments also provide evidence that our action space with the heuristic defined in Eqn. (4)
to set the size of the action space works well in different settings. The initial action space analysis in Sec. 4.1
was for a setting where each agent’s buffer was incremented on every step. This represents an impossibly high
information demand if k is smaller than the number of agents, but in basing our action space analysis off of
this setting we find the best solution for the most demanding scenario, that is, when all agents always have a
constant stream of new packets to transmit. The tests in Sec. 4.3 confirm that the RL approach combined and
heuristic continues to perform well even if the information demands are reduced or are heterogeneous.

5.3 Future Directions

In this work we dealt with the problem of transmission control/medium access at a highly abstracted level. The
potential advantage of this is that our approach may be widely applicably to a variety of communications systems,
or potentially of independent interest to those interested in MARL. That being said, if one wanted to deploy our
approach on physical communications systems, then one may want a more particularized environment to test
the approach under the confines of a specific real-world system. Fortunately, there are well-developed network
simulators available. Internally we have tested our approach with ns3-gym10 and observed similar performance.

While our approach seems to work well, there may also be room for improvement in the formulation of the RL
problem in terms of defining an optimal feature space, action space, and reward function. The buffer experiments
in Sec. 4.3 showed good results for the RL agents, however, the reward function used, Eqn. (1), is quite simplistic
and does not directly use any buffer terms. If one wanted to incentivize certain buffer management (e.g., penalize
when the buffer is maxed-out or have the reward be proportional to buffer size), then buffer terms could be added
to the reward function accordingly.

We tested with 2, 4, and 10 agents, but it would be interesting to see how the approach scales to larger number
of agents and with different threshold values for k. Additionally, there may be other algorithms to benchmark
against that could perform better than the CSMA-style algorithms we employed. Lastly, further study could be
directed towards the exploration of different RL algorithms instead of DQN and/or different hyperparameters
for the neural networks.

To make it easier for those interested in further investigating or expanding on this work, we provide the open
source software for the Gym environment and RL agents in Appendix A.

APPENDIX A. LINK TO SOFTWARE

The custom Gym environment as well as the RL model and benchmarking algorithms can be found at https:

//github.com/Farquhar13/RL_Transmission_Control.

APPENDIX B. DQN HYPERPARAMETERS

Each agents is equipped with a separate DQN model, but the hyperparameters are the same for all the models.
The DQN model uses a small feed-forward neural network for Q-value estimation. We use an ϵ-greedy exploration
strategy where a random action is taken with probability ϵ, and on each step ϵ is decreased by a factor of ϵdecay
until ϵ ≤ ϵmin. The agent trains on every step. The training batch is constructed by randomly sampling past
transitions.

DQN Hyperparameters

Hyperparameter Value
Input dimension |st| = 4
Hidden layer 1 dimension 128
Hidden layer 2 dimension 256
Activation function to hidden layers ReLu
Activation function to output layer Linear
Starting Epsilon ϵ = 1
Epsilon decay ϵdecay = 0.996
Minimum epsilon ϵmin = 0.05
Gamma γ = 0.99
Learning rate α = 10−4

Batch size 64
Loss function Mean Square Error
Optimizer Adam

APPENDIX C. MISCOORDINATION PENALTY PROBABILITIES

A miscoordination will occur when more than k agents transmit at the same time. The probability of miscoor-
dination for 10 agents selecting actions uniformly at random with, k = 2, |A| = 2, is calculated in Eqn. (3) using
the probability mass function for the binomial distribution:

P (X = x) =

(
n

x

)
px(1 − p)n−x. (5)

We can calculate the miscoordination penalty when |A| = 2 by letting n be number of agents and p = 0.5 be the
probability of choosing to transmit. Then,

P (miscoordination) =

n∑
i=k+1

(
n

i

)
pi(1 − p)n−i =

n∑
i=k+1

(
n

i

)
0.5n. (6)

Calculating the probability of miscoordination for larger action spaces is more complicated, as for |A| > 2 the
action space will have some multi-step actions, which means that agents will be taking actions asynchronously.

We can calculate the probability of miscoordination in different way by taking taking a certain view of the
actions. If we map the actions such a 1 denotes a transmission and a 0 denotes no transmission, then we can

https://github.com/Farquhar13/RL_Transmission_Control
https://github.com/Farquhar13/RL_Transmission_Control

view the actions as lists. The action space for |Am| = m can be written:

a0 = (0)

a1 = (1)

a2 = (0, 1)

a3 = (0, 0, 1)

. . .

am−1 = (0, 0, . . . , 0︸ ︷︷ ︸
m - 2 times

, 1).

So Am = {ai}m−1
i=0 . If we are at least m steps into the simulation and assume, as before, that actions are taken

uniformly at random, then we can calculate the probability of transmitting on an arbitrary step. Let c0 and c1
respectively be the count of the number of zeros and ones in the lists in A. Then the transmission probability,
pm for |Am| = m is,

transmission probability for Am =
c1
c0

= pm, (7)

and we find for m ≥ 2, c0 = 1 +
∑m−1

j=2 (j − 1) = 1 +
∑m−2

j=1 j, and c1 = m − 1 since there is one transmission
for every ai except for a0. The transmission probability will decrease as the size of the action space m gets
larger. Formally, this can be seen by noting that

∑m−2
j=1 j is an arithmetic series and it can be shown that

c0 = 1 + m2−3m+2
2 , and thus scales quadratically with the size of the action space m, whereas c1 only scales

linearly with m. Using the fact that actions are taken independently, we now can calculate the probability of
miscoordination on an arbitrary step for n agents with threshold k and action size |A| = m as,

P (miscoordination for Am) =

n∑
i=k+1

pim. (8)

Assuming that actions are selected uniformly at random, we can now prove that a larger action space leads
to a lower miscoordination probability for n agents with threshold k. Let |Ax| = x, |Ax| = y where x < y.
We have shown that a larger action space leads to a smaller transmission probability, so px > py. Suppose
P (miscoordination for Ax) > P (miscoordination for Ay). So,

P (miscoordination for Ax) > P (miscoordination for Ay)
n∑

i=k+1

pix >

n∑
i=k+1

piy

n∑
i=k+1

pix −
n∑

i=k+1

piy > 0

n∑
i=k+1

(pix − piy) > 0.

(9)

The last line is true since, for any a, b, c ∈ R+ with a > b, then ac > bc, so ac − bc > 0, thus every
(pix − piy) is positive and a sum of positive terms is greater than zero. Therefore, P (miscoordination for Ax) >
P (miscoordination for Ay). ■

Put simply, a larger action space will result in a lower transmission probability, which implies a lower prob-
ability for miscoordination.

APPENDIX D. ACTION SPACE ANALYSIS ADDITIONAL DATA

Throughput, k = 1

No. of Agents / No.
of Actions

2 Agents 4 Agents 10 Agents

2 Actions Mean = 0.78006
STDEV = 0.17884

Mean = 0.60261
STDEV = 0.03866

Mean = 0.57710
STDEV = 0.03215

3 Actions Mean = 0.95078
STDEV = 0.02402

Mean = 0.61586
STDEV = 0.02624

Mean = 0.46621
STDEV = 0.06823

4 Actions Mean = 0.64971
STDEV = 0.01450

Mean = 0.63784
STDEV = 0.03712

Mean = 0.48662
STDEV = 0.06416

5 Actions Mean = 0.73348
STDEV = 0.06607

Mean = 0.69083
STDEV = 0.17607

Mean = 0.44202
STDEV = 0.03817

6 Actions Mean = 0.81372
STDEV = 0.07375

Mean = 0.66441
STDEV = 0.01132

Mean = 0.40869
STDEV = 0.05880

7 Actions

–

Mean = 0.67896
STDEV = 0.12725

Mean = 0.43054
STDEV = 0.05287

8 Actions

–

Mean = 0.69733
STDEV = 0.07090

Mean = 0.40404
STDEV = 0.05060

9 Actions

– –

Mean = 0.37100
STDEV = 0.02976

10 Actions

– –

Mean = 0.41004
STDEV = 0.07357

11 Actions

– –

Mean = 0.43033
STDEV = 0.05623

Table 2: Average & standard deviation of throughput for threshold 1. Data is from the last 1,000 steps of a
10,000 step training period and averaged over three runs.

Fairness, k = 1

No. of Agents / No.
of Actions

2 Agents 4 Agents 10 Agents

2 Actions Mean = 0.87845
STDEV = 0.20949

Mean = 0.52672
STDEV = 0.03866

Mean = 0.29744
STDEV = 0.04632

3 Actions Mean = 0.99983
STDEV = 0.00010

Mean = 0.67614
STDEV = 0.13102

Mean = 0.42953
STDEV = 0.03979

4 Actions Mean = 0.99976
STDEV = 0.00001

Mean = 0.83247
STDEV = 0.00112

Mean = 0.49201
STDEV = 0.02939

5 Actions Mean = 0.99159
STDEV = 0.00820

Mean = 0.93710
STDEV = 0.06327

Mean = 0.55159
STDEV = 0.07052

6 Actions Mean = 0.99634
STDEV = 0.00291

Mean = 0.88923
STDEV = 0.06939

Mean = 0.63227
STDEV = 0.02151

7 Actions

–

Mean = 0.90435
STDEV = 0.10433

Mean = 0.65110
STDEV = 0.05479

8 Actions

–

Mean = 0.97265
STDEV = 0.00634

Mean = 0.67006
STDEV = 0.02951

9 Actions

– –

Mean = 0.67199
STDEV = 0.04562

10 Actions

– –

Mean = 0.69593
STDEV = 0.02341

11 Actions

– –

Mean = 0.67655
STDEV = 0.07446

Table 3: Average & standard deviation of fairness for threshold 1. Data is from the last 1,000 steps of a 10,000
step training period and averaged over three runs.

4 Agents, Throughput & Fairness, k = 3

No. of Action Throughput Fairness
2 Actions Mean = 1.71945

STDEV = 0.15431
Mean = 0.89216
STDEV = 0.03130

3 Actions Mean = 1.99699
STDEV = 0.02159

Mean = 0.99979
STDEV = 0.00009

4 Actions Mean = 1.61192
STDEV = 0.04602

Mean = 0.99045
STDEV = 0.00238

5 Actions Mean = 1.55774
STDEV = 0.06220

Mean = 0.98197
STDEV = 0.00516

6 Actions Mean = 1.57845
STDEV = 0.08176

Mean = 0.94473
STDEV = 0.02596

7 Actions Mean = 1.45513
STDEV = 0.08087

Mean = 0.94238
STDEV = 0.00399

8 Actions Mean = 1.56845
STDEV = 0.08251

Mean = 0.90685
STDEV = 0.02018

Table 4: Average & standard deviation of throughput & fairness for 4 agents threshold 3. Data is from the last
1,000 steps of a 10,000 step training period and averaged over three runs.

10 Agents, Throughput & Fairness, k = 5

No. of Action Throughput Fairness
2 Actions Mean = 3.19046

STDEV = 0.58891
Mean = 0.85694
STDEV = 0.14962

3 Actions Mean = 3.91997
STDEV = 0.03990

Mean = 0.98970
STDEV = 0.00431

4 Actions Mean = 3.31367
STDEV = 0.00995

Mean = 0.99861
STDEV = 0.00126

5 Actions Mean = 2.59365
STDEV = 0.17936

Mean = 0.98708
STDEV = 0.00375

6 Actions Mean = 2.43987
STDEV = 0.08961

Mean = 0.96973
STDEV = 0.01043

7 Actions Mean = 2.41671
STDEV = 0.15506

Mean = 0.96493
STDEV = 0.00990

8 Actions Mean = 2.44283
STDEV = 0.16497

Mean = 0.92002
STDEV = 0.00580

9 Actions Mean = 1.85070
STDEV = 0.05589

Mean = 0.94923
STDEV = 0.01256

10 Actions Mean = 1.85649
STDEV = 0.07320

Mean = 0.90869
STDEV = 0.02141

11 Actions Mean = 1.70585
STDEV = 0.08802

Mean = 0.92496
STDEV = 0.01213

Table 5: Average & standard deviation of throughput & fairness for 10 agents threshold 5. Data is from the last
1,000 steps of a 10,000 step training period and averaged over three runs.

APPENDIX E. BENCHMARKING ADDITIONAL DATA

Figure 4: Network throughput and fairness for 2 agents, k = 1, |A| = 3. (Data averaged over three runs.)

Figure 5: Network throughput and fairness for 4 agents, k = 1, |A| = 5. (Data averaged over three runs.)

Figure 6: Network throughput and fairness for 10 agents, k = 1, |A| = 11. (Data averaged over three runs.)

Figure 7: Network throughput and fairness for 4 agents, k = 2, |A| = 3. (Data averaged over three runs.)

Figure 8: Network throughput and fairness for 10 agents, k = 2, |A| = 6. (Data averaged over three runs.)

APPENDIX F. BUFFER EXPERIMENTS ADDITIONAL DATA

Figure 9: Network fairness for 4 agents, k = 1, |A| = 5, where each agent’s buffer is incremented every 8 steps.
(Fairness averaged over three runs.)

Figure 10: Buffer sizes for 4 agents, k = 1, |A| = 5, where buffers are incremented heterogeneously every (2, 5,
8, 10) steps respectively for each agent. (Buffer sizes averaged over three runs.)

Figure 11: Network throughput and fairness for 4 agents, k = 1, |A| = 5, where buffers are incremented
heterogeneously every (2, 5, 8, 10) steps respectively for each agent. (Throughput and fairness averaged over
three runs.)

REFERENCES

[1] Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F., and Melodia, T., “Machine learning for wireless
communications in the internet of things: A comprehensive survey,” Ad Hoc Networks 93, 101913 (oct
2019).

[2] Zhang, K., Yang, Z., Liu, H., Zhang, T., and Başar, T., “Fully decentralized multi-agent reinforcement
learning with networked agents,” (2018).

[3] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W., “Openai
gym,” (2016).

[4] Jiang, J. and Lu, Z., “Learning fairness in multi-agent systems,” (2019).

[5] Foerster, J. N., Assael, Y. M., de Freitas, N., and Whiteson, S., “Learning to communicate with deep
multi-agent reinforcement learning,” (2016).

[6] Kim, D., Moon, S., Hostallero, D., Kang, W. J., Lee, T., Son, K., and Yi, Y., “Learning to schedule
communication in multi-agent reinforcement learning,” (2019).

[7] Yu, Y., Wang, T., and Liew, S. C., “Deep-reinforcement learning multiple access for heterogeneous wireless
networks,” in [2018 IEEE International Conference on Communications (ICC)], 1–7 (2018).

[8] Raeis, M. and Golestani, S. J., “Distributed fair scheduling for information exchange in multi-agent systems,”
CoRR abs/2102.08814 (2021).

[9] Sutton, R. S. and Barto, A. G., [Reinforcement learning: An introduction], MIT press (2018).

[10] Gaw lowicz, P. and Zubow, A., “ns-3 meets OpenAI Gym: The Playground for Machine Learning in Net-
working Research,” in [ACM Intl. Conf. on Modeling, Analysis and Sim. of Wireless and Mobile Systems],
(2019).

[11] Kapetanakis, S. and Kudenko, D., “Reinforcement learning of coordination in heterogeneous cooperative
multi-agent systems,” in [Adaptive Agents and Multi-Agent Systems II], 119–131, Springer (2004).

	INTRODUCTION
	Related Work
	Problem Formulation and Approach
	Simulation Software
	RL Background
	State Space
	Action Space
	Reward Function
	RL Model

	Experiments and Results
	Action Space Analysis
	Benchmarking
	Buffer Experiments

	Conclusions and Future Directions
	Summary
	Discussion
	Future Directions

	Link to Software
	DQN Hyperparameters
	Miscoordination Penalty Probabilities
	Action Space Analysis Additional Data
	Benchmarking Additional Data
	Buffer Experiments Additional Data

