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Abstract—A scalable and computationally efficient framework
is designed to fingerprint real-world Bluetooth devices. We
propose an embedding-assisted attentional framework (Mbed-
ATN) suitable for fingerprinting actual Bluetooth devices. Its
generalization capability is analyzed in different settings and
the effect of sample length and anti-aliasing decimation is
demonstrated. The embedding module serves as a dimensionality
reduction unit that maps the high dimensional 3D input tensor
to a 1D feature vector for further processing by the ATN module.
Furthermore, unlike the prior research in this field, we closely
evaluate the complexity of the model and test its fingerprinting
capability with real-world Bluetooth dataset collected under a
different time frame and experimental setting while being trained
on another. Our study reveals a 9.17x and 65.2x lesser memory
usage at a sample length of 100 kS when compared to the
benchmark - GRU and Oracle models respectively. Further, the
proposed Mbed-ATN showcases a 16.9x fewer FLOPs and 7.5x
lesser trainable parameters when compared to Oracle. Finally,
we show that when subject to anti-aliasing decimation and at
greater input sample lengths of 1 MS, the proposed Mbed-ATN
framework results in a 5.32x higher TPR, 37.9% fewer false
alarms, and 6.74x higher accuracy under the challenging real-
world setting.

Index Terms—RF fingerprinting, Bluetooth, Deep learning,
Embedding module, Attention mechanism

I. INTRODUCTION

ADIO frequency (RF) fingerprint based on the hardware

imperfections of the emitter circuit serves as an excellent
tool or watermark to distinguish between devices manufac-
tured by the same manufacturer even while transmitting the
same message. In the present day and evolving Internet of
Things (IoT) era where numerous wireless devices emerge
everyday, the wireless security and the privacy of data shared
across the spectrum accessed by these devices is a growing
concern [1]], [2].

RF fingerprinting pertaining to the extraction of physical
layer-level (hardware circuitry) imperfections is emerging as
a passive form of wireless emitter identification, i.e., a type of
security scheme that can be implemented in a passive wireless
receiver without any apriori knowledge of the emissions from
the emitter. Wireless fingerprinting enables several security-
related applications such as indoor positioning [3]]-[5[], emitter
tracking and localization [6[]—[8], device identification and
authentication [9], [10], among others. These applications
leverage the signals of opportunity (SoOP) [5]], i.e., existing RF
emissions that hold significant information about their source.
For instance, WiFi, Bluetooth (BT), Frequency Modulated
(FM) broadcast signals, LoRa, ZigBee, among others are SoOP
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signals that are ubiquitously present in the spectrum. A passive
listener (receiver radio) can therefore decipher and characterize
the emitter without sharing any mutual handshake information.
However, extracting the emitter features from the overheard
signals hold a plethora of unique challenges.

RF fingerprinting falls under the broader signal intelligence
application [11]] such as modulation classification [[12[|-[17],
signal/protocol classification [18]], [[19], etc. but is considered
much more challenging due to the minute nature of the
hardware-intrinsic features. A few of those challenges that
severely affect RF fingerprinting involve the aging of hardware
components, effect of wireless standard (complexity of the
waveform) on the fingerprint features, effect of multipath
propagation on the received waveform contributed by the
obstacles, walls, environmental changes, location changes,
noise, interference, etc. For instance, the frequency hopping
nature of the BT waveform makes it challenging to capture
the hardware-intrinsic features. Here, the performance depends
significantly on the input preprocessing, input sample length,
DL architecture, among others. This difficult nature was
demonstrated in [20] where the single task model performance
for the BT fingerprinting was poorer than with WiFi. Model
generalization challenges were portrayed in [21] where even
with WiFi channel equalization, their baseline model could
achieve only 23.2% accuracy under the different day training
and testing (Train One Day and Test on Another - TDTA).
These factors consequently affect the performance of the
trained and deployed deep learning (DL) models in the real-
world operational environment. Hence, studies in this realm
must emphasize validating the generalization capability of
the model such that the effect of these confounding factors
is accounted for in the evaluation. To this end, we collect
emissions from actual IoT devices in a real-world operational
environment to capture the differences in the time frame,
channel, location, and testbed setups during training and de-
ployment. Hence, the samples are collected under two different
testbed setups with different time frames and locations.

II. RELATED WORKS

The various approaches towards RF fingerprinting to en-
hance the security of wireless devices that utilize wireless
standards such as WiFi, BT, and LoRa are an actively re-
searched topic [20], [22]-[24]]. The earlier works focused on
traditional approaches such as wavelet-based [25]], I/Q imbal-
ance [20], radio turn-on transient-based [27] among others
[28]-[30]]. After the recent resurgence of machine learning,
DL has been leveraged to overcome some of the challenges
[2]. However, the application of DL especially a lightweight
deployable framework that improves generalization capability
for fingerprinting real-world BT devices is lacking.
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A. Real-World Emitters but Without Generalization Test

The authors of [24]] study WiFi-based drone detection
with actual drone emitters rather than synthetically generated
emissions. In [31]], a 1D AlexNet and ResNet architectures are
adopted to fingerprint 7 DJI M100 drones. The generalization
test performed here involves training and testing on different
bursts of the emission collected during the same time frame. A
ZigBee emitter fingerprinting with Differential Constellation
Trace Figure (DCTF) using a LeNet-5 CNN model was
proposed in [32]. The ZigBee emissions are collected, trained,
and tested on the same time frame, location, and testbed setup.
However, these works do not perform the generalization test
where the classifiers are trained with data obtained from a
certain time frame, location, and testbed setup and tested on
another unseen time frame, location, and testbed setup, quoted
in our article as TTD scenario. As discussed previously, this
will be key to developing reliable real-world RF fingerprinting
algorithms.

B. Studies Considering Generalization Test

The authors of [21] conduct CNN-based WiFi fingerprinting
on a custom as well as large-scale DARPA dataset using a
channel equalization approach. Here, the authors perform a
generalization test where only the time frame of the testing
dataset is different from the training, reported in their article as
Train on One Test on Another (TDTA) scenario. The authors
report an accuracy of only 23.2% with their Baseline CNN
model even with WiFi channel equalization. A LoRa emitter
fingerprinting using a spectrogram-based CNN is presented in
[33]]. The authors focus on the carrier frequency offset (CFO)
of the LoRa emitters in their work. The evaluations to validate
model generalization is carried out for different day training
and test for a wired setup where the emitters are cabled over an
attenuator to the receiving Universal Serial Radio Peripheral
(USRP) radio. For the analysis conducted in the wireless
setting, only same day training and testing setup is conducted.
In [34], the authors employ a triplet loss based CNN model to
fingerprint base stations transmitting either of 5G New Radio,
LTE, or WiFi waveforms. However, these base stations are
software-defined radio (leverages USRP B210) based rather
than real-world base stations and emit synthetically generated
waveforms with MATLAB’s LTE, WLAN, and 5G toolboxes.
In this work, the authors perform a generalization test by
training and testing on different days. However, the multipath
effect, fading, and orientation experienced by the emissions
under our challenging TTD scenario is closer to the deploy-
ment setting faced in the real-world setting. Note that the
proposed Mbed-ATN framework attains a 46.5% accuracy in
fingerprinting the challenging frequency hopping BT emitters
under the TTD setting.

C. Spatio-temporal model

In [35]], the authors study the fingerprinting efficacy of
recurrent neural networks (RNN) and a hybrid of RNN and
CNN on Quadrature Phase Shift Keying (QPSK) waveforms
from 8 emitters. However, the study utilized synthetic QPSK

waveform generated in software and emitted using USRP
radios. In contrast, in order to advance the practical application
and demonstrate the usability of fingerprinting algorithm, we
adopted 10 COTS IoT emitters that generate commercial
standard Bluetooth 5.0 signals. We also demonstrate the im-
plementation of a scalable architecture that benefits from the
spatio-temporal feature extraction capability of the attentional
module as well as conduct the evaluation in a generalized
setting under different propagation conditions. Further, we crit-
ically dissect, evaluate, and infer the memory, computational,
and fingerprinting performance of the proposed architecture
alongside other benchmark models.

While the vast RF fingerprinting literature delves into
waveforms such as ADS-B, WiFi, LoRa, and Zigbee [2], a
robust DL based approach to fingerprint BT devices capable
of handling unseen configuration is still lacking [20]]. The core
challenge stems from the rapid frequency hopping nature of
the BT. In this work, for the first time, we introduce a unique
embedding-assisted attentional framework (Mbed-ATN) for
fingerprinting BT emitters and evaluate it in depth. We further
demonstrate (with visualization) the challenging nature of
the BT waveform in conjunction with realistic deployment
conditions under different location, testbed setup, and time
frame settings than those the model have been trained with.

D. Key Contributions

Unlike existing literature, we comprehensively evaluate the
model’s complexity, prediction capability, and generalization
merit. We measure the generalization power of the proposed
DL model by evaluating with unseen data obtained from a
different time frame, location, and testbed setup compared to
the training data. Our contributions are summarized below,

o Architecture: We propose for the first time, an
embedding-assisted attentional framework for fingerprint-
ing BT devices that provide on average 90.5% finger-
printing accuracy and demonstrate the lightweight and
scalable nature of the proposed DL model to validate its
practical deployment capability.

« Dataset: We collect real-world BT emissions from actual
IoT devices under two indoor laboratory scenarios in
rich multipath propagation, noise, and scattering (due
to obstacles) settings. The datasets utilized in this arti-
cle have also been published in IEEE dataport [36] to
foster deployment-friendly research in the fingerprinting
realm. Such a challenging dataset that facilitates model
generalization validation for BT emitters has never been
collected and made available to the public, hence it is con-
sidered extremely pivotal in RF fingerprinting research.

« Experimental evaluation: We present the evaluation
results of the proposed DL model in contrast to the
benchmark with RF data collected under a different time
frame, location, and experimental setup than the training
data in addition to analyzing the effects of input tensor
length and anti-aliasing filtering.

« Model Analysis: We further shed light on how to
critically evaluate neural network architecture on the
basis of their memory consumption and other aspects of
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model complexity that are essential to building models
for practical deployment. The proposed model consumes
65.2x lesser memory, 16.9x fewer FLOPs, and 7.5x%
fewer trainable parameters in contrast to the state-of-the-
art architecture.

III. EMBEDDING-ASSISTED RF FINGERPRINT EXTRACTOR

In this section, we elaborate on the design of the proposed
embedding-assisted RF fingerprint extractor (Mbed-ATN) en-
abling it to classify BT emitters in an unseen challenging envi-
ronment. The proposed Mbed-ATN is a deep learning frame-
work that adopts a convolutional neural network (CNN)-based
embedding module (Mbed) that serves as the feature extractor
and dimensionality reduction module. The Mbed module maps
the high dimensional BT signal input tensor (3 x M, M =
[10k, 100k, 1M]) to a one dimensional (1D) 1024 x 1 vector
which feeds into a CNN and gated recurrent unit (GRU)-
based attentional (ATN) classifier. The ATN module extracts
the spatial and sequential patterns in the input vector allowing
it to efficiently isolate the fingerprint from other confounding
factors. This unique Mbed-ATN framework that combines the
advantages of CNN and GRU in extracting the unique emitter
characteristics is shown in Fig.|l} Emphasizing the significance
of deployment of the Mbed-ATN in real-world operational
scenarios, we enforce a lightweight and scalable architecture
that can generalize well to the real-world environment.

Input Data Preprocessing: We denote the time domain
BT signal of length N samples captured by the receiver as
y(t)|X;. In our previous work [20] and as an ongoing study,
we have empirically determined that BT emitter fingerprinting
requires larger input sample lengths and additional features
in the input tensor for acceptable classification accuracy. The
capture length in this study is intentionally kept large enough
(NN = 40 MS) to experiment with data segmentation and other
signal processing required to determine the input format that
yields an acceptable fingerprinting accuracy. We subject the
captured BT signal to the following operations to generate a
3 X M tensor.

Y3><M —

Flo )f”: ] (1)

PSD (g(t»_l

where §(t)M , is the downsampled version of y(¢)¥,, the first
two rows contain the magnitude and phase of the decimated
signal §(t) and the third row is the power spectral density
(PSD) of the decimated signal.

Embedding Module: We resort to the powerful feature
extraction capability of CNNs to process the input tensor Y.
The Mbed module acts as a dimensionality reduction step
in mapping the large 3D input tensor to a condensed 1D
feature-embedded vector. It treats the 3D input tensor as a 3-
channel input and adopts 1D convolutional kernels to encode
the dependencies between the adjacent samples in each input
channel. The architectural detail of the Mbed module is shown
in Table [l We resort to using the parametric ReLU (PReLU)

activation function [37] in the convolutional layers as it has
shown considerable improvement when the negative values are
not zeroed out. The PReLU performs non-linear mapping of
an input z as in equation [3]

if x>0

J(@) = {L if<0

Here, a is the trainable parameter and hence, the name PReLLU.
The dense layer utilizes ReLU activation. Unlike PReL.U, the
ReLU maps all negative values to 0, or in other words, when
the a = 0 in equation |3} the function is equivalent to ReLU.

3)

TABLE I: Architectural detail of Mbed module.

Input 3 X M

Conv (100,1,10) - Stride (1,10) VM < 1e6 - Stride (1,20) VM > 1e6
Conv (50,1,6) - Stride (1,3) VM < 1e6 - Stride (1,6) VM > 1le6
Maxpool (1,8) Dropout 0.5

Conv (40,1,10) - Stride (1,10) VM < 1e6 - Stride (1,5) VM > 1le6
Maxpool (1,5) - active for M > 1e6 Dropout 0.5
Dense 1024

Activation: Conv Layers - PReLU, Dense Layer - ReLU

Attentional module: We resort to adopting an attentional
mechanism to extract the inter-dependencies in the samples
and focus only on the relevant portions of the samples with
fewer layers. Our past experience and experiments show
that the adoption of the attentional module can outperform
deep network architectures and preempt the need for denser
networks. The ATN module is a hybrid model that combines
the benefits of CNN and GRU. While the CNN performs 1D
convolutions on the embedding vector f to capture the timing
relationship of the samples, the GRU extracts the before-after
timing dependencies of the samples. We consider this as a
pivotal step in characterizing and comprehensively extracting
the fingerprint features, especially owing to the hopping nature
of the BT waveform as it traverses the multipath propagation
channel. GRU is an efficient form of long short term memory

TABLE II: Architectural detail of ATN module.

Input 1024 x 1

Branch-1: Conv (15,1,7) - Stride 1 - Padding 1 - PReLU - Dropout 0.1
Conv (32,1,7) - Stride 1 - PReLU - MaxPool (1,2) - Dropout 0.5

Branch-2: Conv (15,1,3) - Stride 1 - Padding 1 - PReLU - Dropout 0.1
Conv (32,1,3) - Stride 1 - PReLU - MaxPool (1,2) - Dropout 0.5

Branch-3: GRU hidden size = 80, #layers = 3, Dropout = 0.5
Dense 1024 - PReLU - Dropout 0.2

Dense 64 - PReLU - Dropout 0.2

Dense 10 - Softmax

(LSTM) since it uses only two gates - Update and Reset -
instead of three gates as in LSTM. Further, GRU does not
possess an internal memory or an output gate. Therefore, GRU
uses fewer training parameters and memory and hence trains
faster than LSTM. The update (u;) gate controls the amount
of past information that needs to be carried over to the next
state. The reset (r;) gate determines the amount of previous
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Fig. 1: Proposed Scalable Mbed-ATN framework

history that needs to be forgotten. The GRU units are defined
by the following set of equations,

u = U(Wuxt + Ryhy 1 + bu) (@)
ry = U(Wrxt +R/hyg + br) &)
h, = tanh (Wux; + Ry (r; © he_1) + by,) (6)
hy=(1—-uw)Ohs, +u, Oh, @)

where x; is the input vector, W; and R; are the weight
matrices, b; the bias vector, h; indicates candidate hidden
state, tanh(o) is the hyperbolic tangential activation function,
and o (o) is the sigmoid activation function.

As in the architectural diagram in Fig[l] the input (f) to
the ATN module feeds into two convolutional branches, and a
GRU branch. The notations Cy, C2, and G denote the operations
of the first convolutional branch, second convolutional branch,
and the GRU branch respectively. The layer details of the
branches are presented in Table The output from the
convolutional branches is vectorized (flattened) form of their
respective feature maps. The GRU branch is a many-to-1 type
of GRU whose output is also a vector. The operations of the
ATN module are governed by the following set of equations,

0] = Cl (f) S = SlLU(Og) (8)
0, = Co(f) a=[01;0;5] 9)
03 =G(f) (10)

where s is the scoring vector function approximation ob-
tained by applying Sigmoid Linear Unit (SiLU) activation to
the output from the GRU branch. The SiLU activation
multiplies the input (z) by its sigmoid activation (o (x)). The
operator ; indicates vector concatenation. The final attentional
vector a is generated by concatenating the outputs from the
convolutional branches with the scoring vector s as in equation
(). This scoring vector is fed into the subsequent Dense layers
for the final softmax emitter classification.

Training Mbed-ATN framework: We train the end-to-end
Mbed-ATN framework as in Algorithm 1. The Mbed module
is initially trained to classify the emitters by adding an output
softmax Dense layer to the architecture in Table [ This layer
is dropped after training and the 1024 x 1 feature vector f
is fed to the ATN module. The ATN module is then trained
independently while keeping the weights of the Mbed module
unchanged. The modules are trained for maximum epochs of
2000 with Adam optimizer at a learning rate of 0.0001. The

network convergence is monitored during the training process
and the parameters are frozen at the best point of convergence.

Algorithm 1 Backpropagation to train Mbed-ATN framework

Train Mbed module:
Initialize network weights © rrpeq-
for epoch = 1 to MAX_EPOCHS do
for steps = 1 to STEPS do
Input batch x and Compute loss
Larved(©nrveq) [standard forward pass]
Compute gradients V£ ped(©rved)
Update weights
O ibed ¢— Onbea [standard backward pass]
end for
Stop training once model stops learning (starts to diverge)
end for
Freeze the Mbed module with learned weights O} ;.4
Eliminate the output softmax Dense layer of Mbed module and
feed the 1024 x 1 feature vector f to ATN module.
Train Mbed-ATN module:
Initialize network weights O} /peq, O aTN .
for epoch = 1 to MAX_EPOCHS do
for steps = 1 to STEPS do
Input batch x and Compute loss
Larbed—ATN (O3rped, @ arn) [standard forward pass]
Compute gradients Veped—arnN (Orrped, OATN)
Update weights of ATN module
O%rn ¢— ©arn [standard backward pass]
end for
Stop training once model stops learning (starts to diverge)
end for

IV. EXPERIMENTAL EVALUATION

Real-world IoT Datasets: We consider a testbed with real-
world commercial IoT devices for the practical application
and evaluation of the proposed RF fingerprinting framework.
We collect the BT emissions from 10 IoT emitters in two
challenging settings in an indoor multipath environment with
other unavoidable interferences and obstacles rendering a
rich multipath propagation scenario. A passive listener USRP
X300 tuned into a 2 MHz bandwidth of a 2.414 GHz center
frequency is streaming samples at the rate of 2 MS/s. The
USRP X300 is outfitted with a UBX160 daughterboard and
a VERT2450 antenna affixed to the RX2 antenna port. The
respective emitters are positioned to transmit the BT bursts
throughout the capture while the receiving radio records 40
MS in one capture. For the benefit of research in the domain,
the datasets utilized in this article have also been published in
IEEE dataport [36].
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From the RF fingerprinting-specific feature extraction per-
spective, the BT waveform is challenging in itself owing to
the frequency hopping nature which hops at the rate of 1600
hops/second over the 2.4 GHz ISM band. This implies the
signal will be periodically visiting the tuned in BT channel
making it a harder waveform to capture and fingerprint. The
shorter input sample lengths therefore cannot comprehensively
capture the emitter characteristics and will therefore need
larger sample lengths [20].

Setup 1: Here the emitters and the receiving radio are posi-
tioned in line-of-sight (LoS) settings. The separation between
the emitter and receiver is varied from 1.6 ft to 9.8 ft in steps
of 0.8 ft.

Setup 2: This setup is considered a challenging setting
given the rich multipath propagation settings between the
emitters and the receiver. Here the emitter is placed at the
four corners of the indoor laboratory while the receiver is
placed at the center of the laboratory space. In this setup,
the maximum separation between one of the corners and the
receiver amounts to approximately 24.2 ft. Figure 2] shows
the indoor laboratory setup with emitter locations and receiver
placement. The multipath nature of the laboratory contributed
by the walls, furniture, and lab equipment are clearly portrayed
here (to keep the figure less crowded some obstacles are not
shown).

10ft—
_sst . ssh 60t

35ft 55ft 55t 55t

Emitter
Location #1

ilmitter

ation #2 @

Fig. 2: Testbed layout for Setup 2 demonstrating the emitter in
one of the corners and receiver at the center of the laboratory.

Generalization Evaluation: We consider two categories
of experimental evaluations to quantify the generalization
capability of the model to suit real-world deployment.

1) Train Test Same time frame, location, and testbed setup
(TTS) - Here, the samples for the training and testing set
are drawn from the data captured in the same time frame,
location, and testbed setup. For the TTS scenario, we use
the samples from the Setup 1 for training and testing.

2) Train Test Different time frame, location, and testbed
setup (TTD) - In this scenario, the model is trained
with samples collected from Setup 1 and later tested on
captures from Setup 2.

We validate the argument that the training and testing data
under the TTD have different distributions by utilizing the

well-known t-Distributed Stochastic Neighbor Embedding (t-
SNE) visualization tool. The training and testing data distribu-
tion under the TTS and TTD setting are shown in Fig[3a] and
Fig[3b] respectively. Figure [3a indicates same distributions for
TTS unlike TTD (Fig[3b) where the samples possess different
features/distributions.

® Training Set: Setup 1
Testing Set: Setup 1

® Training Set: Setup 1
Testing Set: Setup 2

l.~

Dimension-
Dim

e
<&

.

(a) TTS Distribution (b) TTD Distribution

Fig. 3: t-SNE visualization of training and testing data distri-
bution under the TTS and TTD evaluation settings.

A. Key Performance Indicators

In this section, we specify the performance metrics that are
used to evaluate the models. The predictions made by any
DL model or in other words, the confusion matrix can be
categorized into true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

1) True positive rate (TPR) or Recall: quantifies the positive
predictions made by the model with respect to total positive
predictions. For a multi-class classification, it is TPR =

. TP, . .
W, where 7 denotes the class 7.

2) False positive rate (FPR): measures the false predictions
of the model in proportion to the total false predictions. Its
computed as F'PR = Z¢L=1 w

3) Top-1 accuracy (or balanced accuracy): is the arithmetic
mean of the recall for each class.

4) FLOPs: accounts for the total number of floating point
operations in the model.

5) Model parameters: measures the total number of trainable
parameters in the model.

6) Supported sample lengths: the maximum measured input
tensor lengths supported by the model without causing any
out-of-memory (OOM) GPU errors.

B. Complexity Analysis

Model complexity is an often overlooked factor by develop-
ers while designing and training deep learning (DL) models.
According to a recent empirical study on 4960 failed DL jobs
in Microsoft, 8.8% of the job failures were caused due to the
depletion of GPU memory accounting for the largest category
in all DL specific failures [39]]. The frequency hopping nature
of the BT waveform requires a scalable architecture that can
process larger input sample lengths. This makes the model
architecture challenging since it must be large enough to pro-
cess larger input samples but at the same time be lightweight
Sfor supporting commercial-off-the-shelf (COTS) deployment
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platforms. In this section, we perform a systematic review of
the memory footprint of the proposed Mbed-ATN model and
benchmark it against Oracle [22] and the GRU-based network
proposed in [35].

Having a firm grasp of the memory usage of a model is
imperative in designing efficient and lightweight DL models.
In order to answer this critical practical usage question, we
elucidate the maximum memory consumption of a model and
demonstrate it on the proposed Mbed-ATN and benchmark
models. The training of a DL model can be segmented into
roughly five stages:

1) Model Loading: This stage involves moving the model
parameters to the GPU memory. Here the current memory
usage is the model memory.

2) Forward pass: Here the input batch is passed through
the model and the intermediate activations are stored in
memory for use by backpropagation. Here the current
memory consumption is contributed by the model and the
activations.

3) Backward pass: The gradients are computed from the end
of the network to the beginning while discarding the saved
activations during the traversal. The memory usage in this
step is by the model and the gradients.

4) Optimizer parameters: The optimizer parameters are
updated during the backpropagation. The parameters would
vary depending on the type of learning algorithm such as
Adam, RMSProp, etc. For example, Adam would estimate
the first and second moments of the gradients. Here the
memory is depleted by the model, gradients, and gradient
moments.

5) Training iterations: Once the first iteration has passed
and the optimizer has taken a step, the gradient and
gradient moments are updated and stored in memory. So
the maximum memory consumption in the subsequent
training iterations will be in parts by the model, activations,
gradients, and gradient moments.

We used the PyTorch framework and a Quadro RTX 6000
GPU in implementing and evaluating the models. Figure {4
demonstrates the GPU memory usage by Mbed-ATN model
and benchmark models under the same evaluation settings on
the challenging frequency hopping BT emissions. In Fig[al
we analyze the GPU memory usage when the input tensor
lengths are configured to M = 10 kS and M = 100 kS. It
can be seen that the memory usage rapidly scales up to trigger
OOM with the Oracle model while the proposed Mbed-ATN
maintains manageable and very low memory usage. While
the GRU network has a lesser memory usage than Oracle
it is still higher and computationally much slower than the
proposed Mbed-ATN rendering it infeasible for practical BT
fingerprinting applications. To give the reader a quantifiable
comparison, at the sample length of M = 100 kS, the
GRU network has an inference time of ~ 6.7s. Such slow
computation is inherent to RNN which processes samples
within each example sequentially (output at each step de-
pends on the previous) unlike CNN that can perform parallel
computation. This corresponds to a 7.3x and 65.2x lesser
memory usage with Mbed-ATN architecture in contrast to

Oracle at sample lengths of M = 10 kS and M = 100 kS
respectively. Similarly, Mbed-ATN scores a 1.15x and 9.17x
lesser memory usage at sample lengths of M = 10 kS and
M = 100 kS respectively when compared to GRU network.
This evaluation was carried out with a batch size of 2. A higher
batch size of 70 and an input sample length M = 1 MS were
not feasible with the benchmark models. However, to provide
more insight to the readers, we characterize the proposed
Mbed-ATN at different batch sizes and sample lengths in
Fig[db] These analyses demonstrate the GPU memory usage
with the proposed Mbed-ATN well under the GPU memory
capacity.
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(a) GPU Memory Consumption of training Oracle
and Proposed Mbed-ATN models with different sample
lengths and Batch size=2.
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(b) GPU Memory Consumption of training the proposed
Mbed-ATN and benchmark models with different sample
lengths and batch sizes.

Fig. 4: GPU Memory Consumption of training the proposed
Mbed-ATN and benchmark models. The red line indicates the
memory capacity of the Quadro RTX 6000 GPU.

To shed more light on the model complexity from a deploy-
ment standpoint, we also evaluate the floating point operations
(FLOPs), the number of trainable parameters, and inference
time of the proposed Mbed-ATN and benchmark models for
an input tensor length of M = 10 kS (Table[MI). The proposed
Mbed-ATN showcases a 16.9x fewer FLOPs and 7.5x lesser
trainable parameters when compared to Oracle. Although the
GRU network possesses fewer trainable parameters and FLOPs
in contrast to both Mbed-ATN and Oracle, the fully recurrent
nature of the network renders it computationally much slower
as showcased by an inference time which is 21.21x and



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE III: FLOPs analysis with the benchmark. TABLE IV: Fingerprinting performance at M = 10 kS.

Scenario | Model TPR FPR Top-1 Acc.
Model FLOPs | #Parameters Supported Inference Mbed 0.762 0.027 0.775
Sample length | Time TTS Mbed-ATN 0.738 0.029 0.742
Mbed-ATN | 2.181G | 33.951M Y] 1.4ms Oracle [22] 0.738 0.029 0.742
Oracle [22] 36.87G | 256M 10k 0.95ms GRU (35| 0.19 0.089 0.211
GRU |35] 0.01G 3.627M 10k 29.7ms Mbed 0.158 0.094 0.145
TTD Mbed-ATN 0.079 0.103 0.075
Oracle [22] 0.079 0.103 0.069
31.3x that of the Mbed-ATN and Oracle models respectively. GRU B3] 9.157 0.099 9.135

We clarify here that the slightly higher inference time of
the proposed Mbed-ATN in contrast to Oracle despite the
significantly lesser computational and memory requirement is
attributed to the GRU unit employed in the ATN module of
the architecture that processes samples present in each input
sequentially. Recall here that the FLOPs and inference time
are evaluated under the same settings for all models and at a
sample length of 10 kS. These experiments demonstrate the
superior lightweight nature of the proposed Mbed-ATN model
in terms of memory footprint and computational requirements
while being capable of supporting a larger input sample length
of 1 MS. Further, it also showcases the scalability limitation
of the benchmark models.

C. Effect of Sample length

In this section, we critically evaluate how the length of
the input tensor affects the performance of the fingerprinting
framework. As mentioned previously, the capture length is
N = 40 MS which is subsequently decimated to different
sample sizes (M) such as 10 kS and 1 MS. In these evalua-
tions, we also characterize the Mbed module’s fingerprinting
performance separately to showcase the need for the ATN unit.

Since it is only feasible to support (for the given hardware)
a sample length of M = 10 kS with the benchmark models,
we also present its fingerprinting performance in Table
We measure the performance of the models when they are
trained and validated with the dataset collected using Setup 1
and tested with a portion of the test set obtained from unseen
data collected from the same scenario, i.e., TTS. Under the
TTS evaluation, the proposed Mbed model outperforms the
Mbed-ATN as well as benchmark models in terms of the
TPR, FPR, and Top-1 accuracy. The performance of Mbed and
Mbed-ATN was measured for a sample length of 1 MS Table
Comparing the KPIs of these evaluations under the TTS
scenario, demonstrate an increase in TPR and Top-1 accuracy
while lower FPR at higher sample lengths. These evaluations
further portray that the significance of the ATN module comes
into play at a larger sample length (M = 1 MS). This is
intuitive as the GRU branch of the proposed Mbed-ATN can
decipher the time series relation better with longer sequence
lengths. Table [V] shows a 2.8% higher TPR, 23% fewer false
alarms, and 0.5% greater top-1 accuracy with Mbed-ATN in
contrast to the Mbed unit alone under the TTS condition.

D. Generalization on different location, testbed, and time
frame setting.

An important aspect of training and deploying a DL model
for real-world applications is its generalization capability. The
fingerprinting literature has often resorted to evaluating this in

TABLE V: Fingerprinting performance at M = 1 MS.

Scenario Model TPR FPR Top-1 Acc.
Mbed 0.881 0.013 0.885

TTS Mbed-ATN 0.905 0.01 0.91
Mbed 0.105 0.095 0.175

TTD Mbed-ATN 0.211 0.086 0.275

terms of train one day and test another (TDTA) scenario where
the DL model is trained and validated with one dataset while
evaluating it with a test set collected on a different day (time
frame) [21]. However, unlike the past works, we make it even
more challenging by festing on data collected from not just
a different time frame but also under a different location and
testbed setup, i.e., TTD. Under the TTD setting, the models
are trained and validated with data collected from Setup I and
tested on data captured from Serup 2.

The TTD evaluation in Table shows marginally higher
performance of the proposed Mbed unit in contrast to the
benchmark models. The significance of the ATN module is
depicted in Table [V] where it achieves 2.6% higher top-1
accuracy in contrast to the Mbed unit.

E. Effect of applying anti-aliasing decimation

In this study, we evaluate the effect of anti-aliasing deci-
mation as opposed to straightforward downsampling. For this,
we decimate the 40 MS capture to 1 MS with an anti-aliasing
order 8 Chebyshev type I filter. Here, the waveform is subject
to anti-aliasing filtering prior to downsampling. The effects of
anti-aliasing decimation is shown in Table Here, we can
evidently see the performance increase of the models with
reference to the downsampling without anti-aliasing filtering
in Table[V] This implies that the plain decimation was causing
aliasing thereby distorting the emitter signatures affecting
their distinguishability. We show that Mbed-ATN achieves
23.1% higher TPR, 11.1% lesser false alarms, and 17.7%
higher accuracy compared to the Mbed module under the
TTD setting. To truly understand, the effect of anti-aliasing,
we contrast the Mbed-ATN framework’s performance under
the TTD setting in Table [V] and Table Note the 99.5%

TABLE VI: Fingerprinting performance with anti-aliasing
decimation (sample length = 1M).

Scenario Model TPR FPR Top-1 Acc.
Mbed 0.905 0.011 0.905

TTS Mbed-ATN 0.905 0.011 0.905
Mbed 0.342 0.072 0.395

TTD Mbed-ATN 0.421 0.064 0.465
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Fig. 5: Achievable BT fingerprinting performance on TTS (same day same location testbed setup)
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Fig. 6: Achievable BT fingerprinting performance on TTD (different day different location testbed setup)

increase in TPR, 25.6% drop in false alarms, and 69.1% spike
in the top-1 accuracy of the Mbed-ATN with the anti-aliasing
decimated samples. With respect to the TTD case in Table
m the Mbed-ATN demonstrates a 5.32x higher TPR, 37.9%
fewer false positives, and 6.74x higher accuracy with the
increased sample length subject to anti-aliasing filtering. To
shed more light on this visually, we depict this increase in
accuracy in Fig[7] Here, the label IM_AA denotes a sample
length of 1 MS with anti-aliasing decimation and we also show
the accuracy with a sample length of 100 kS. The improved
generalization capability with longer sample length and anti-
aliasing decimation under the challenging TTD setting with
the adoption of the ATN module can be clearly seen in Fig[7b|
This study shows the combined effect of higher sample length
and anti-aliasing on the performance of the proposed Mbed-
ATN fingerprinting framework. Figures [5] and [6] show the
confusion matrices of the benchmark models and proposed
Mbed-ATN at their maximum supported input tensor lengths
under the TTS and TTD experimental settings. The superiority
of the proposed Mbed-ATN model in terms of the true
positives, true negatives, false positives, and false negatives
are evident in both the challenging TTD scenario and the TTS
setup. These evaluations validate the improved generalization

and lightweight nature of the proposed Mbed-ATN framework
taking it one step closer to practical deployment. While this
is a significant improvement in the TTD setting for BT
compared to existing literature, we are currently working on
other refinements to make the TTD metrics close to the TTS.
Furthermore, we also share the dataset so that the larger
research community can continue to work on improving the
generalization capability of RF fingerprint approaches using
real-world data [36]].

FE. Why not raw IQ samples ?

We also validate the necessity to use the extracted features
as in the expression [2]in section[[II] as input rather than raw IQ
samples. To achieve this, we used raw 1Q samples arranged
as a tensor of length 1 MS with two rows containing I and
Q samples separately in each row as input to the Mbed-ATN
architecture under the TTS setup. The confusion matrix of
the architecture with raw IQ samples is shown in Fig[§] The
false predictions and the inability of the model to distinguish
between the emitters can be clearly seen from the confusion
matrix. The need for the appropriate input tensor is obvious in
comparison to the confusion matrix in Fig[5c which has only
negligible false predictions. We also tabulate the performance
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Fig. 7: Demonstrating effect of sample length and anti-aliasing
decimation on Mbed-ATN fingerprinting performance.

TABLE VII: Fingerprinting performance under various input
formats (sample length = 1M).

Model TPR FPR Top-1 Acc.
Mbed-ATN (IQ) 0.166 | 0.089 | 0.195
Mbed-ATN (Tensor[) | 0.905 | 0.011 | 0.905

metrics and provide a direct comparison with the Mbed-ATN
using the appropriate input tensor as in expression [2] in Table
Adopting the appropriate input format resulted in a top-1
accuracy of 91% and FPR of 1.1%.

Confusion matrix

e
Predieted tabel

Fig. 8: Performance using raw 1Q samples under a TTS setup.

V. CONCLUSION

We proposed and presented a detailed analysis of Mbed-
ATN, an embedding-assisted attentional framework for en-
hancing the generalization capability of the fingerprinting ar-
chitecture. The proposed model is scalable for supporting large

input tensor lengths of 1 MS while using significantly less
GPU memory. The proposed Mbed-ATN utilizes 65.2x lesser
memory in contrast to the state-of-the-art Oracle architecture
for an input length of M = 100 kS. Further, for a 10 kS
sample length, the Mbed-ATN utilizes 16.9x fewer FLOPs
and 7.5x fewer trainable parameters with respect to Oracle.
We showed that the inference time of the proposed Mbed-ATN
is 21.21x lesser than that of the benchmark GRU model and
attains a 1.15x and 9.17x lesser memory usage at sample
lengths of M = 10 kS and M = 100 kS respectively when
compared to GRU network. A detailed empirical study on the
effect of higher sample length and anti-aliasing decimation
was demonstrated for the proposed Mbed-ATN framework
in showcasing the improved generalization capability of the
model with the introduction of attentional learning. Unlike
the existing literature, we resorted to the challenging different
time frame, location, and experimental setup (TTD) scenarios
along with demonstrating the GPU efficiency of the model in
validating the real-world deployment merit of the proposed
framework.
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