
Fieldable Cross-Layer Optimized Embedded

Software Defined Radio is Finally Here!

Jithin Jagannath, Anu Jagannath, Justin Henney, Noor Biswas, Tyler Gwin, Zackary Kane, Andrew Drozd

Marconi-Rosenblatt AI/ML Innovation Lab, ANDRO Computational Solutions, LLC, Rome NY

{jjagannath, ajagannath, jhenney, nbiswas, tgwin, zkane, adrozd}@androcs.com

Abstract—The concept of cross-layer optimization has been
around for several years now. The primary goal of the cross-layer
approach was to liberate the strict boundary between the layers of
the traditional OSI protocol stack. This is to enable information
flow between layers which then can be leveraged to optimize
the network’s performance across the layers. This concept has
been of keen interest for tactical application as there is an
overwhelming requirement to operate in a challenging and dy-
namic environment. The advent of software defined radios (SDR)
accelerated the growth of this domain due to the added flexibility
provided by SDRs. Even with the immense interest and progress
in this area of research, there has been a gaping abyss between
solutions designed in theory and ones deployed in practice. To
the best of our knowledge, this is the first time in literature,
an embedded SDR has been leveraged to successfully design a
cross-layer optimized transceiver that provides high throughput
and high reliability in a ruggedized, weatherized, and fieldable
form-factor. The design ethos focuses on efficiency and flexibility
such that optimization objectives, cross-layer interactions can
be reconfigured rapidly. To demonstrate our claims, we provide
results from extensive outdoor over-the-air evaluation in various
settings with up to 10-node network typologies. The results
demonstrate high reliability, throughput, and dynamic routing
capability achieving high technology readiness level (TRL) for
tactical applications.

I. INTRODUCTION

Wireless communication has undoubtedly become a ubiq-

uitous part of our lives and we are constantly striving to meet

the evolving needs. This includes all connected devices in

our smart homes, our cellular network, the entire concept of

internet-of-things (IoT) networks controlling manufacturing,

industry automation, smart grid metering, space communica-

tions, underwater networks, tactical networks among others.

As we move from 5G (5th Generation) to 6G (6th Generation),

the need to optimize the scarce resources is becoming evident

and inevitable [1]–[5].

Traditionally, the strictly layered architecture proposed by

the open systems interconnection (OSI) reference model has

been the prevalent design for a majority if not all modern

networking architectures. This is strict in the sense that they

are designed to maintain only a limited interface between

the neighboring layers [6]. Realizing the deficiencies in this

layered architecture, cross-layer optimized approach has been

proposed over the past decade to maximize the utilization of

scarce resources by "erasing" the strict boundaries between

various layers of the protocol stack. In other words, any

attempt to violate the OSI reference model is considered a

cross-layer design [7]. While there are abundant solutions

proposed in literature [6], the majority of it is limited to

simulations that may have strong assumptions and/or do not

consider all the hardware constraints and rigidness that may

be encountered during a real-life deployment. During the

next phase of advancement, the advent of software defined

radios (SDR) provided the much-needed impetus to this

concept providing the flexibility to implement novel cross-

layer architectures. This enabled some of these efforts to

be extended to hardware-based testbed evaluations. In most

cases, these efforts still used one or more dedicated (non-

embedded) host computers to implement the solutions which

were then connected to SDRs. Even with these advances, to

the best of our knowledge, there does not exist a ruggedized

fieldable SDR with a comprehensive cross-layer optimization

capable software module implemented on an embedded ARM

processor. The main reason for this is the various hurdles that

are associated with developing the solution from theory to

effective hardware deployable software.

Contribution: In this article, we present the first, com-

pletely stand-alone, ruggedized, and fieldable cross-layer op-

timized solution build using a low SWaP (Size, Weight,

and Power) SDR. In this case, we implement an energy-

aware cross-layer protocol that aims to maximize network

lifetime for enabling telemetry collection of tactical test and

evaluation ranges. The primary contribution of this work is

the realization of theoretical or simulation-level concepts to

a fieldable hardware entity. We first discuss the hardware-

level modification required to customize the baseline SDR

into a fieldable solution. Next, we outline how the protocol

stack was designed and implemented on a computationally

constrained ARM processor. To demonstrate the feasibility

of the implementation and the designed transceiver in terms

of throughput and reliability, we performed extensive outdoor

experiments with up to 10 nodes in the network.

Impact: In this paper, we have demonstrated the feasibility

and effectiveness of designing and developing an embedded

SDR-based cross-layer optimized solution. The proposed ar-

chitecture and design principles can be leveraged to implement

and mature several of the novel cross-layer optimized solutions

to meet the evolving needs of both tactical and commercial

communication systems. Our implementation principle has

been to facilitate rapid reconfiguration of network objective

with only few lines of code thereby enabling a truly software-

defined radio that evolves with the growing requirements. We

hope and believe the unique cross-layer design methodologies

and extensive outdoor evaluations (field trials) will serve as an

impetus for maturation of novel cross-layer solutions.

II. RELATED WORK

Cross-layer approaches have been explored as a novel solu-

tion to address a wide range of problems in wireless communi-

cation due to its perceived benefits in sustaining communica-

tions in a dynamic and constrained environment [6], [7]. This

includes RF domain for tactical network [8]–[10], commercial

network [11]–[14], acoustic underwater networks, and even in

the upcoming visible light communication networks [15]–[18].

These solutions are designed for various objectives such as

optimizing throughput and/or latency [19]–[22], fairness [8],

energy consumption [12], [13], [15], resource management

[14], [17], efficient multi-path TCP [11]. In this work, we

focus on reviewing the maturity of these state-of-the-art cross-

layer solutions to expose the absence of deployable embedded

SDR based solutions.

As in any novel research, simulations are the obvious first

choice to establish feasibility and performance gains over

existing approaches. Most works rely on MATLAB [10], [20],

NS3 [12], OMNET [9] or similar simulators. Majority of the

works that propose cross-layer optimization have been limited

to simulation [8]–[12], [19]–[21] due to the challenges, time,

and effort it takes to evaluate them on hardware testbeds.

In most cases, these simulations are executed under various

assumptions and/or are abstracted from the physical layer

(PHY) of the protocol stack and are restricted to packet-level

simulators [6], [10], [20]. This abstraction implies several

intricacies of real-world deployment are overlooked or set

aside to be handled in the future which often thwarts the

maturation level of cross-layer solutions.

In several cases, the next logical step is to evaluate the feasi-

bility and performance on hardware-based testbed. The advent

of SDR has significantly bolstered efforts in this direction. At

the same time, there is a distinction in the maturity/utility

of solutions that have been implemented using a host PC

controlling the SDRs and ones efficiently ported to a stan-

dalone embedded SDR. The key difference is in the rapidity of

development on computationally capable hardware as opposed

to carefully optimized (often C/C++ or VHDL/Verilog) im-

plementation on embedded (resource-constrained) hardware.

The host PC based development approach saves time and

resources to rule out impractical solutions before significant

time is spend in optimizing the implementation for final mature

deployment. Therefore, based on the resources, the risk asso-

ciated with novel cross-layer solutions either approaches can

be adopted to mature network optimizing solutions. Several of

the solutions discussed earlier have been successfully extended

to preliminary hardware testbeds [22], [23]. In most of these

cases, SDRs like the USRPs are used in association with

the host PC. Beyond SDRs, well-defined commercial wireless

protocols like WiFi and LoRa (for PHY) have also been

used along with microcomputing platforms to design cross-

layer approaches [24]. In this case, a cross-layer approach -

distributed energy-efficient routing (SEEK) - was implemented

on Raspberry Pi to maximize the network lifetime using LoRa

as the PHY. In this form, it was highly restricted in throughput

(due to LoRa) as a trade-off for longer transmission range.

To summarize, the majority of the cross-layer optimized

work is limited to simulations and has not been successfully

validated on a hardware platform. This is a major hurdle and

shortcoming of the current state of research and development.

In the recent past, some of this has been mitigated by pre-

liminary hardware-based evaluations but has often provided

limited performance in terms of metrics like throughput (due

to low sampling rate constrained by computations) and/or has

been depended on external computational platforms. Due to

these reasons, even with the advances made in the field, there is

no known cross-layer optimized embedded SDR solution built

using commercial-off-the-shelf (COTS) embedded SDR that,

(i) can be deployed as a standalone unit, (ii) makes cross-layer

optimized distributed routing decisions, (iii) is ruggedized for

outdoor deployment, and (iv) can provide reliable and high

throughput (up to 11 Mbps) links over large distances (1 km

for up to 5.5 Mbps).

III. SYSTEM DESIGN

In this section, we describe the system design of the cross-

layer optimized transceiver and how it has been executed.

A. Embedded Software Defined Radio Platform

One of the key objectives of the work was to ensure a mod-

ular and programmable, portable, handheld, battery-powered

standalone solution which should operate in harsh conditions

for several hours. This implied that the foundation of the

design needs to be a low SWaP embedded SDR. The proposed

solution was implemented on a Epiq Solutions’ Sidekiq Z2

SDR [25] (Fig. 1). It consists of an Analog Devices’ AD9364,

Xilinx Zynq XC7Z010-2I system on chip (SoC), and the key

device specifications are provided in Table. I

TABLE I: Specification of Z2

Specs. Values

Frequency 70 MHz - 6 GHz

Sample Rate Up to 61.44 MS/s

Size 30 x 51 x 5 mm

Weight 8 grams

Processor Dual-core ARM

Fig. 1: Z2 SDR

Several hardware customizations were necessary to accom-

plish the objective of designing a fieldable transceiver using

the COTS SDR. This includes power amplifier, filters for the

frequency of interest, power supply system that is capable

of supplying power from battery during standalone remote

operation but could also operate from DC power source

when available. To aid the implementation of various cross-

layer routing techniques that use location of nodes (such as

geographical routing [24]) an embedded GPS receiver was also

included in the final design. The block diagram of the final

transceiver and the ruggedized prototype is shown in Fig. 2.

B. Cross-layer Software Architecture for Embedded System

The custom cross-layer protocol stack for the transceivers

is implemented on the Zynq SoC of the Sidekiq Z2 plat-

RF

Filtering

Tx Power

Amp

Ethernet

with PoE

PRC 148

Battery

GPS Receiver

System

Power Supply

RJ45 12-28 V DC Input

PRC 148

Battery

GPS Antenna

SMA Connector

Main Antenna

TNC Connector

DC Power Input

Power Switch

RJ45 Jack

Fig. 2: Transceiver Design

Outbound thread

General

Queue

ARM CPU

K

e

r

n

e

l

M

o

d

u

l

e

Beacon thread

ZMQ thread

APP Receive thread

X-n-APP Daemon

L2-3 Daemon

Receive thread

N
e

tl
in

kS

o

c

k

e

t

Zynq SoC

PHY/L1
Z2 API

Routing thread

Transmit Queue

Channel Access thread

Fig. 3: Software Architecture.

TX Location

X=0

RX Location 1

X=495.2 m

RX Location 2

X=771.2 m

RX Location 3

X=1019 m

Transmitter Set up at TX Location, X=0

Fig. 4: Range testing setup and

map-view of the locations.

form. Specifically, the PHY is an IEEE802.11b implemented

purely on the FPGA subsystem while the upper layers are

implemented in the C/C++ language on the embedded Linux

operating system of the Dual-core ARM Cortex A9 CPU of the

SoC. In this section, we will detail the software architecture

of the upper layers (above PHY/L1) to establish long-range

mesh networking.

Our primary goal in building the software architecture was

to maintain reconfigurability. The reconfigurability was en-

forced by adopting a modular design framework with defined

functions for each module while being resource-efficient. We

define reconfigurability as the ability to modify the protocol

characteristics such as routing objective, specifics of the cross-

layer information exchanged, etc. Essentially, designing the

entire radio stack on the SoC presents a non-trivial challenge

owing to the memory, computational, and latency constraints.

Since an unorganized framework could add overhead from

unnecessary resource utilization consequently increasing the

system latency.

The software architecture is broadly categorized into user

and kernel space with daemons running in the user space

as in Fig. 3. We resort to daemons each of which hosts its

own threads to attain a parallelized architecture that does

not perform redundant and unnecessary memory accesses. In

other words, we can say the user space hosts multi-threaded

processes which interface with the kernel space. However,

there are certain design challenges with moving key functions

to the kernel space. Kernel programming requires the most

trusted operations as any bug or corruption may cause severe

system crashes. Nevertheless, kernel space enjoys the benefits

of low latency memory access operations. Furthermore, we

also leverage the transport layer and IP headers supported

by the Linux kernel. Figure 3 shows a socket which is a

generalized custom socket architecture for interfacing with

external devices. The socket architecture is generalized to be

able to reprogram and enable interfacing with a wide range of

socket protocols such as ZMQ, UDP, etc.

The stack employs two daemons, namely; L2-3 and Cross-

layer & Application (X-n-APP) that interact with the kernel

module via Netlink sockets. Notice that the entire stack only

has two daemons since it’s more efficient to use threads over

processes as they share the process’ resources. On the other

hand, having more processes would require more computa-

tional and memory resources. The kernel module handles the

transport layer, packet encapsulation, and partial IP header

population prior to passing over to the L2-3 daemon. The L2-3

daemon is the cross-layer L1, L2 (MAC), and L3 (Network)

module which performs CSMA/CA-based medium access and

SEEK routing. Another level of cross-layer interactions occur

when the L2-3 daemon acquires L1 information such as the

link reliability, data rate, etc., via the Sidekiq Z2’s PHY

application programming interface (API). Hence, the term

cross-layer as it involves interaction between L1, L2, and L3

to perform the optimized decision making. Due to limited

space, we do not delve into the details of the cross-layer SEEK

routing algorithm that is employed here. We urge interested

readers to refer to our previous work [24] for detailed discus-

sion. Therefore, we only define our utility function adopted to

perform distributed optimized routing here,

Ui j = ηi j

(

max [∆Qi j,0]

qi

)(

dis −d js

dis

)

(

E
j
r

E
j
0

)

,∀ j ∈ NBi

where ηi j is the number of bits/Joule of transmission energy

successfully transmitted from i to j and can be replaced

by reliability when using constant power and modulation,

Ei
0 and Ei

r is initial and residual battery energy respectively,

effective distance progressed by i choosing j is represented as

dis −d js, and ∆Qi j is the differential backlog. To accomplish

this objective in a distributed manner, each node aims to

maximize this value by just collecting information from its

local neighbors. This information is exchanged by means

of periodic beacon packets. The effectiveness of SEEK has

been demonstrated in [24]. The emphasis of this work and

contribution is not SEEK but the design and feasibility of

maturing similar solutions for tactical applications. Due to the

modular implementation, just by changing a few lines of code

that defines the utility function, one can reconfigure the stack

to execute a new optimization objective.

The outbound DATA packets that are handed over to the

L2-3 daemon from the kernel module are queued in the

General Queue awaiting the best route assignment. This is

accomplished by the Outbound thread which continuously

listens for incoming packets from the kernel module. The

SEEK thread continuously performs route computation and

assignment for the outbound packets in the General Queue.

Following route assignment, the packets will await their trans-

mission opportunity in the Transmit Queue. A third thread

- Channel Access - performs CSMA/CA awaiting a clear-

to-send (CTS) from its intended next-hop/destination to de-

queue the segment (set of DATA packets) from the Transmit

Queue. The segment for which the CTS was received will

be forwarded to the FPGA via the L1 API for over-the-air

transmission. It must be noted that if the intended next-hop for

a segment is unresponsive, the segment will be returned back

to the General Queue for rerouting. Additionally, a Receive

thread continuously monitors for incoming packets from the

FPGA, processes, and responds (such as with CTS or ACK)

accordingly based on received packet type. A supplementary

auxiliary thread also tracks DATA timeouts.

The X-n-APP daemon handles two tasks; (i) preparing

the beacon packet with necessary information to be shared

with immediate neighbors for distributed optimization, and (ii)

handling messages for any application such as a graphical user

interface (GUI) in this case. The beacon packets as well as the

GUI requires location information to reflect the most recent

coordinates on the GUI. We choose a efficient approach and

access the GPS module from only one location - X-n-APP

daemon - in the stack to avoid GPS pinging from multiple

software locations. This retrieved GPS location information

is subsequently populated in the beacon message. The GPS

location extraction as well as beacon packet construction

is carried out by the Beacon thread. The Beacon thread

periodically sends this beacon messages to the lower layers

for outbound transmission where the remaining fields such as

residual battery and current buffer backlog are updated. Here,

we note that unlike the DATA, the beacon packet is treated as

control packet and are not queued in the general or transmit

queues of the L2-3 daemon rather it is directly sent to the L1

FPGA for transmission.

The X-n-APP daemon also functions as a generalized appli-

cation daemon for direct interfacing with an application such

as a GUI. Both ZMQ and APP receive threads are designed to

support such applications and hence can be customized based

on the application at hand. Since the use case of this particular

transceiver is remote deployment in test and evaluation ranges,

a GUI application is developed to interface with the transceiver

at a central command and control location. We emphasize that

the remote monitoring and configuration (parameters like data

rates, frequency etc.) capability enabled by the GUI will ease

the operator load by alleviating the need to physically travel

to the deployed locations. However, we do not elaborate on

the GUI design or its implementation aspects as it is beyond

the scope of this article rather state that the daemon is capable

of handling any such applications.

We further reemphasize that the software-defined stack is

designed to be reconfigurable to modify the cross-layer routing

as the requirements evolve in the future or depending on the

desired network application. It is noteworthy that the utility

function discussed above is representative of one such exam-

ple of the algorithm where the network application desires

energy-aware routing. This specific choice was dictated by the

customer’s requirement. The broad impact of this work is the

reconfigurable nature of the software-defined stack such that

it keeps evolving to meet the future requirements rapidly.

TABLE II: Parameters Of Outdoor evaluation

Parameters Values

Data rates 1, 2, 5.5, 11 Mbps

Transmit Power 1-3.5 W (based on attenuation)

Center Frequency 430 MHz

Bandwidth 22 MHz

Payload Size 1000 Bytes

Segment Size 32 Packets

IV. OUTDOOR EXPERIMENTS AND RESULTS

In this section, we performed extensive outdoor experiments

to evaluate the performance of the implemented software mod-

ules in a realistic environment. Since the proposed solution is

implemented on SDR, it can be extended to any frequency of

interest supported by the target hardware. To accomplish the

experiments, we received a temporary experimental license

from FCC to utilize the 430 MHz frequency within a geo-

graphical area. It is important to point out that the purpose of

the experiments is to evaluate the performance of implemented

cross-layer optimized algorithms on general purpose processor

(GPP) supported by a FPGA-based PHY layer for outdoor

deployment. The novelty and utility of the SEEK algorithm

itself has been established in previous work [24]. To the best

of our knowledge, this is the first time such a comprehensive

evaluation has been undertaken using deployment-ready cross-

layer optimized embedded SDRs. The default parameters are

listed in the Table II unless otherwise specified.

A. Transmission Range Evaluation

The target deployment scenario for the device is remote test

and evaluation sites, hence, the design goal for transmission

range was to achieve up to 1 km. The setup of the transmitter

and the key testing locations from our range testing experi-

ments is shown in Fig. 4. For each reported value in the Table.

III, the results were averaged over 10,000 packets transmitted

in each run. We define reliability as the percentage of packets

received with respect to packets sent.

TABLE III: Link reliability for varying transmission ranges

Data Rate Distance Reliability

2 Mbps

495.2 m 99.9%

771.2 m 99.77%

1019 m 98.08%

5.5 Mbps

495.2 m 99.62%

771.2 m 96.03%

1019 m 97.16%

11 Mbps

495.2 m 85.28%

771.2 m 31.56%

1019 m 13.9%

Table. III shows that the performance was consistent for

both 2 Mbps and 5.5 Mbps up to 1019 m but the performance

of 11 Mbps degraded sooner (1 Mbps eliminated due to

limited space). Due to the FCC license restrictions and urban

environment, the next feasible point was at 1942 m from

the transmitter at which point no packets were received. The

Data rates (Mbps)

1 2 5.5 11

R
e

li
a

b
il

it
y

0

20

40

60

80

100

120

99.9 99.9 99.9

92.7

100.0 100.0 100.0 100.0

Without ARQ

With ARQ

Fig. 5: Reliability vs data rates

Data rates (Mbps)

1 2 5.5 11

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

0

1

2

3

4

5

0.83

1.50

3.05

3.57

0.83

1.49

3.02
2.82

Without ARQ

With ARQ

1 2 5.5 11

0

0.5

1
0.83

0.75

0.55

0.32

Normalized Throughput

Fig. 6: Throughput vs data rates

Data rates (Mbps)

1 2 5.5 11

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

0

2

4

6

8

0.82

1.50

3.04

3.56

0.91

1.70

3.51

4.56

0.93

1.80

3.93

4.95

Payload=1000 Bytes

Payload=2000 Bytes

Payload=3000 Bytes

1 2 5.5 11

0

0.5

1
12.92 %

19.73 %

28.94 %

39.01 %

Improvement in

Normalized Throughput

Fig. 7: Throughput for varying payload

Number of sessions

1 2 4

N
o

rm
a
li
z
e
d

 T
h

ro
u

g
h

p
u

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pak/s=10

Pak/s=20

Pak/s=40

Pak/s=80

Fig. 8: 10-node Experiment

Time(min)

2 4 6 8 10 12 14 16 18

A
v
g

.
N

o
.
P

a
c
k
s

0

2

4

6

8

10

12

R2 Battery dropsR1 Backlogged R3 location change

Relay R1

Relay R2

Relay R3

Total

Fig. 9: 5-node Experiment (dynamic routing)

TX

RX

185 m

Peer-to-Peer

5-Node Dynamic Routing Experiment

10-Node Experiment Topology

Fig. 10: Outdoor Topologies

performance degradation of 11 Mbps was attributed to sensi-

tivity to lower signal-to-noise-ratio and multi-path propagation

effects. Further in-lab cabled analysis revealed there is room

for improvement in sensitivity (15 dB) in the future iterations

of the FPGA PHY. Overall, the experimentation was successful

as we hit our target distance of 1 km even at 5.5 Mbps.

B. Peer-to-Peer Experiments

As described earlier, the decision to implement the PHY on

FPGA and the rest of the protocol stack was to achieve the best

combination of high data rates and the required flexibility to

implementing cross-layer routing protocols. Yet, it is important

to study the delays and associated overhead it takes to make the

necessary calls between the GPP and FPGA to support packet

transmission and how it impacts the data rates. To accomplish

this, we perform outdoor peer-to-peer testing for varying data

rates and payload sizes to analyze the impact.

First, in Fig. 5, we study the reliability at the different data

rates with and without automatic repeat request (ARQ) enabled

at the MAC layer. It can be clearly seen that the transceiver

has high reliability close to 100% for 1, 2, and 5.5 Mbps even

without ARQ enabled. At 11 Mbps the reliability decreases

to 92% without ARQ and returns to 100% with ARQ with

the trade-off of throughput. Figure 6 depicts how the peer-to-

peer throughput varies at different PHY data rates 1, 2, 5.5,

11 Mbps. The throughput in this case only considered the

payload of the packets and does not include the headers or

the control packets. The throughput considered here is also

referred to as goodput in some literature. The figure also de-

picts the normalized throughput which is defined as the ratio

between throughput and data rate. The design choice provides

solid performance at 1 and 2 Mbps especially considering

it depicts the goodput achieved. The impact of the overhead

becomes visible as the data rate increases to 5.5 and 11 Mbps.

This hypothesis is further substantiated in our experiments that

show an increase in normalized throughput with the increase

in payload as shown in Fig. 7. The normalized throughput

increased by up to 39% for 11 Mbps when the payload was

increased from 1000 Bytes to 3000 Bytes.

C. 10-Node Network Experiments - Network Capacity

In this experiment, we evaluate how the network handles

increasing number of sessions and source (packet generation)

rate. The 10-node topology is shown in Fig. 10. The experi-

ments were conducted at 1 Mbps of data rate, the source rate

was varied from [10,20,40,80] packets/s, and the number of

sessions (independent sources generating traffic to the gateway

node) were set to 1, 2 and 4. This is motivated by a typical

use case for our intended deployment scenario. As expected,

Fig. 8 demonstrates that the normalized throughput increases

and gets saturated both when the source rate increases and the

number of sessions increases. There is no drop in performance

even when there are multiple sessions (4) with high source

rates (80) and the normalized throughput is maintained at

the saturated value (∼ 0.6). This shows the efficiency of the

network in handling multiple traffics and session rates as

expected even when the traffic increases.

D. 5-Node Network Experiment - Dynamic Routing

For timely evaluation, we designed a specific experiment

such that we can determine the effectiveness of the implemen-

tation of SEEK algorithm to dynamic changes in the network.

To accomplish this, we consider a topology shown in Fig. 10.

The source S1 continuously transmits packets destined for the

gateway node GW. S1 chooses the appropriate relay among R1,

R2, and R3 based on SEEK algorithm. We plot the average

packets received from each relay node every 10 s interval. The

values are averaged using a moving window of 60 s duration

to get smoother curves.

In the first part of Fig. 9 (blue shade), in a uniform setting,

the traffic is evenly distributed. Next, we increase the backlog

of the R1 to emulate a congestion scenario at a node. As it can

be seen (yellow shade), S1 learns to avoid R1 and routes the

packets through R2 and R3. Next, the residual energy of R2

is rapidly dropped by removing the DC power supply and the

residual energy in the battery was close to 10%. As it can be

seen, S1 recognizes this in the next part (yellow shade) and

prefers R3 so that lifetime of the network can be extended.

Finally, we now move the R3 node behind the source S1

as shown in Fig. 10 such that it is no more a feasible next

hop. In this situation, with R1 congested, R3 is no more the

possible choice for forward progress, S1 must return to R2

with a lower battery since that is the only possible choice to

relay the packets to the destination. It is also interesting to see

that even with all these changes, the total packets/s at the GW

remains very stable demonstrating the rapid adaptability of

the cross-layer optimized nodes. In this experiment, we have

demonstrated the gamut of routing decisions the nodes can

make in a distributed manner by just gathering information

from its immediate neighbors demonstrating the effectiveness

of the cross-layer optimized routing using an intuitively rep-

resentative experiment.

V. CONCLUSION AND FUTURE WORK

This article introduces the first known cross-layer optimized

transceiver that has been designed, developed, and matured to

provide high throughput and reliability by implementing the

protocol stack (except PHY) on an embedded ARM processor.

We have demonstrated through extensive outdoor experiments

the capability, range, and demonstrated dynamic routing un-

der varying network conditions. The modular design allows

reconfiguration of the cross-layer protocol stack to rapidly

customize components like, information flow, cross-layer in-

teractions, and optimization objective itself by changing a few

lines of codes. We hope this successful demonstration of cross-

layer optimized embedded transceivers will provide directions

for future cross-layer optimized solutions to benefit tactical

and commercial applications.

ACKNOWLEDGMENT

Authors would like to thank John Orlando, Jeff Porter of

Epiq Solutions for their support, Raymond Shaw of Spectrum

Bullpen for help with SSRA, and Dan O’ Connor of ANDRO

for help during the outdoor testing.

REFERENCES

[1] M. Katz, M. Matinmikko-Blue, and M. Latva-Aho, “6genesis flagship
program: Building the bridges towards 6g-enabled wireless smart soci-
ety and ecosystem,” in Proc. of IEEE Latin-American Conference on

Communications (LATINCOM), 2018, pp. 1–9.

[2] Y. Zhao, J. Zhao, W. Zhai, S. Sun, D. Niyato, and K.-Y. Lam, “A survey
of 6g wireless communications: Emerging technologies,” ArXiv, vol.
abs/2004.08549, 2020.

[3] A. Jagannath, J. Jagannath, and T. Melodia, “Redefining wireless
communication for 6G: Signal processing meets deep learning,” arXiv

preprint arXiv:2004.10715, 2020.

[4] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems:
Applications, trends, technologies, and open research problems,” IEEE

Network, vol. 34, no. 3, pp. 134–142, 2020.

[5] E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas,
N. Cassiau, L. Maret, and C. Dehos, “6g: The next frontier: From
holographic messaging to artificial intelligence using subterahertz and
visible light communication,” IEEE Vehicular Technology Magazine,
vol. 14, no. 3, pp. 42–50, 2019.

[6] B. Fu, Y. Xiao, H. Deng, and H. Zeng, “A survey of cross-layer designs
in wireless networks,” IEEE Communications Surveys Tutorials, vol. 16,
no. 1, pp. 110–126, 2014.

[7] F. Foukalas, V. Gazis, and N. Alonistioti, “Cross-layer design proposals
for wireless mobile networks: A survey and taxonomy,” Commun.

Surveys Tuts., vol. 10, no. 1, pp. 70–85, Jan 2008.
[8] X. Wang and K. Kar, “Cross-layer rate optimization for proportional

fairness in multihop wireless networks with random access,” IEEE

Journal on Selected Areas in Comms, vol. 24, pp. 1548–1559, 2006.
[9] I. Nosheen, S. A. Khan, and F. Khalique, “A mathematical model for

cross layer protocol optimizing performance of software-defined radios
in tactical networks,” IEEE Access, vol. 7, pp. 20 520–20 530, 2019.

[10] J. Jagannath, T. Melodia, and A. Drozd, “DRS: Distributed Deadline-
Based Joint Routing and Spectrum Allocation for Tactical Ad-hoc Net-
works,” in Proc. of IEEE Global Communications Conference (GLOBE-

COM), Washington, DC USA, December 2016.
[11] T. Zhu, X. Chen, L. Chen, W. Wang, and G. Wei, “Gclr: Gnn-based

cross layer optimization for multipath tcp by routing,” IEEE Access,
vol. 8, pp. 17 060–17 070, 2020.

[12] M. J. Herrmann and G. G. Messier, “Cross-layer lifetime optimization
for practical industrial wireless networks: A petroleum refinery case
study,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp.
3559–3566, 2018.

[13] J. Jagannath and S. Furman and A. Jagannath and A. Drozd, “Energy
Efficient Ad Hoc Networking Devices for Off-the-Grid Public Safety
Networks,” in Proc. of IEEE Consumer Communications & Networking

Conference (CCNC), Las Vegas, NV, USA, January 2019.
[14] S. Barmpounakis, N. Maroulis, M. Papadakis, G. Tsiatsios, D. Soukaras,

and N. Alonistioti, “Network slicing - enabled ran management for 5g:
Cross layer control based on sdn and sdr,” Computer Networks, vol. 166,
p. 106987, 2020.

[15] Y. Zhou, H. Yang, Y.-H. Hu, and S.-Y. Kung, “Cross-layer network
lifetime maximization in underwater wireless sensor networks,” IEEE

Systems Journal, vol. 14, no. 1, pp. 220–231, 2020.
[16] N. Cen, J. Jagannath, S. Moretti, Z. Guan, and T. Melodia, “LANET:

Visible-Light Ad Hoc Networks,” Ad Hoc Networks, vol. 84, 2019.
[17] M. S. Demir and M. Uysal, “A cross-layer design for dynamic resource

management of vlc networks,” IEEE Transactions on Communications,
vol. 69, no. 3, pp. 1858–1867, 2021.

[18] J. Jagannath and T. Melodia, “VL-ROUTE: A Cross-Layer Routing
Protocol for Visible Light Ad Hoc Network,” in Proc. of IEEE Symp.

on a World of Wireless, Mobile, and Multimedia Networks (WoWMoM),
Washington D.C., USA, June 2019.

[19] L. Ding, K. Gao, T. Melodia, S. Batalama, D. Pados, and J. Maty-
jas, “All-spectrum Cognitive Networking through Jointly Optimal Dis-
tributed Channelization and Routing,” IEEE Transactions on Wireless

Communications, vol. 12, no. 11, pp. 5394–5405, November 2013.
[20] L. Ding, T. Melodia, S. Batalama, J. Matyjas, and M. Medley, “Cross-

layer Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad
Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 59,
pp. 1969–1979, May 2010.

[21] C. She, C. Yang, and T. Q. S. Quek, “Cross-layer optimization for ultra-
reliable and low-latency radio access networks,” IEEE Transactions on

Wireless Communications, vol. 17, no. 1, pp. 127–141, 2018.
[22] J. Jagannath, S. Furman, T. Melodia, and A. Drozd, “Design and

experimental evaluation of a cross-layer deadline-based joint routing
and spectrum allocation algorithm,” IEEE Transactions on Mobile

Computing, vol. 18, no. 8, pp. 1774–1788, 2019.
[23] G. Sklivanitis, E. Demirors, A. Gannon, S. N. Batalama, D. A. Pados,

and S. N. Batalama, “All-spectrum cognitive channelization around
narrowband and wideband primary stations,” in Proc. of IEEE Global

Communications Conf. (GLOBECOM), San Diego, CA, December 2015.
[24] J. Jagannath and S. Furman and A. Jagannath and L. Ling and A.

Burger and A. Drozd, “HELPER: Heterogeneous Efficient Low Power
Radio for Enabling Ad Hoc Emergency Public Safety Networks,” Ad

Hoc Networks (Elsevier), vol. 89, pp. 218 – 235, 2019.
[25] Sidekiq-Z2. Epiq Solutions. Accessed July 19,

2021. [Online]. Available: https://epiqsolutions.com/static/
Epiq-Solutions-Sidekiq-Z2-8a9337a3ad0d6387032e52c2db623625.pdf

https://epiqsolutions.com/static/Epiq-Solutions-Sidekiq-Z2-8a9337a3ad0d6387032e52c2db623625.pdf
https://epiqsolutions.com/static/Epiq-Solutions-Sidekiq-Z2-8a9337a3ad0d6387032e52c2db623625.pdf

