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A B S T R A C T

In this position paper, we discuss the critical need for integrating zero trust (ZT) principles into next-generation
communication networks (5G/6G). We highlight the challenges and introduce the concept of an intelligent
zero trust architecture (i-ZTA) as a security framework in 5G/6G networks with untrusted components. While
network virtualization, software-defined networking (SDN), and service-based architectures (SBA) are key
enablers of 5G networks, operating in an untrusted environment has also become a key feature of the networks.
Further, seamless connectivity to a high volume of devices has broadened the attack surface on information
infrastructure. Network assurance in a dynamic untrusted environment calls for revolutionary architectures
beyond existing static security frameworks. To the best of our knowledge, this is the first position paper that
presents the architectural concept design of an i-ZTA upon which modern artificial intelligence (AI) algorithms
can be developed to provide information security in untrusted networks. We introduce key ZT principles as
real-time Monitoring of the security state of network assets, Evaluating the risk of individual access requests,
and Deciding on access authorization using a dynamic trust algorithm, called MED components. To ensure
ease of integration, the envisioned architecture adopts an SBA-based design, similar to the 3GPP specification
of 5G networks, by leveraging the open radio access network (O-RAN) architecture with appropriate real-time
engines and network interfaces for collecting necessary machine learning data. Therefore, this work provides
novel research directions to design machine learning based components that contribute towards i-ZTA for the
future 5G/6G networks.
1. Introduction

Wireless communication has become the key enabler of emerg-
ing technologies such as autonomous vehicles, vehicle-to-everything
(V2X) networks, smart infrastructure, and internet-of-things (IoT) [1,
2]. The fifth-generation (5G) networks provide a massive volume of
heterogeneous devices with seamless connectivity and computational
resources for autonomous and intelligent operation [3,4]. Further,
sixth-generation (6G) – and beyond – networks incorporate more agile
radio environments, including satellite and unmanned aerial vehicle
(UAV) communications, to provide a three-dimensional (3D) radio [5,
6]. However, traditional network security frameworks have obvious
weaknesses in providing security assurance in such a complex and
dynamic network environment.

Traditional network security models assume a network perimeter,
as the trust zone, which is protected against unauthorized access. Any
subject operating in the trust zone, after appropriate authentication
and authorization, is deemed trusted. However, due to the agile radio
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environment, mobility, and heterogeneity of next-generation tactical
networks, identification of the network perimeter is challenging if not
impossible. More importantly, such models allow lateral movement of
subjects in the trust zone after authentication.

The third generation partnership project (3GPP) has developed
enhanced security frameworks specifically designed for 5G network
architecture [7]. They introduce several security levels for various
network functions including network access, user/application domains,
and service-based architecture (SBA) security. The frameworks incor-
porate appropriate authentication, authorization and, key agreement
protocols for the security of various technologies, such as device-to-
device (D2D) and V2X communications, software-defined networking
(SDN), and network function virtualization (NFV).

Most existing security protocols assume a strong trust relationship
among network entities and services providing authentication and
authorization. Such assumptions can lead to serious security vulner-
abilities. A few scenarios where these vulnerabilities are exploited to
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deploy privacy attacks, denial-of-service (DoS), man-in-the-middle, and
impersonation attacks, are discussed in [8,9].

Zero trust architecture (ZTA) is a solution to address security re-
quirements in a network with untrusted infrastructure [10]. A ZTA
provides network assurance under the assumption that no subject,
requesting access to the network resources, can be trusted even after
initial authentication and authorization. Every access request is individ-
ually authorized and monitored during the access period for compliance
with security policy rules. A dynamic trust evaluation for every access
request is the key tenet of zero trust (ZT). The main function of a ZTA
is authorizing the individual access requests by a subject rather than
authorizing the subject requesting access.

The U.S. Department of Defense (DoD) introduces ZTA as a neces-
sary paradigm shift in cybersecurity from the classical perimeter-based
security to a data-centric model of security systems [11]. In the perspec-
tive of this model, rather than a means for communication, networks
are considered as a means for distributed data management; i.e., ac-
cessing, processing, transferring, and storing data through the network.
Hence, the next generation security frameworks, which are based on
ZTA, are expected to protect the data during this entire cycle. One of
a few realizations of a ZTA-based security system for smart healthcare
exploiting cloud services, through 5G networks, for data processing and
management is recently introduced in [12].

Dynamic risk assessment and trust evaluation are key elements of a
ZTA. We introduce the architecture of an intelligent ZTA (i-ZTA) which
provides a framework to employ artificial intelligence (AI) engines
for information security in untrusted networks. We also discuss the
necessity for AI in obtaining a full realization of ZTA for next generation
5G networks. We discuss the adoptability of open radio access network
(O-RAN) for the integration of such i-ZTA. Further, we argue how the
multi-access edge computing (MEC) technology of 5G networks can
be exploited to provide resource-constraint devices with the necessary
computational resources for realizing the envisioned i-ZTA.

The rest of the paper is organized as follows. First, in Section 2, we
provide a brief impact statement to provide the readers the envisioned
impact of this position paper. Section 3 introduces ZT principles and
the necessity for the i-ZTA. Challenges of integrating i-ZTA into existing
networks and the distinct features of next-generation networks enabling
i-ZTA are discussed in Section 4. The envisioned architecture and
research directions for the i-ZTA is explained in Section 5, and the paper
concludes in Section 6.

2. Impact statement

Fifth-generation (5G) wireless networks are expected to handle a
large volume of data generated by a wide range of devices includ-
ing smartphones, autonomous vehicles, smart buildings, cities, and
infrastructure. The members of society nowadays have their personal
sensitive data stored on servers throughout the network and rely on the
various access points to avail network-based services and applications.
More importantly, the operation of future critical technologies such as
autonomous vehicles, smart grids and emergency systems, that deal
with public safety and national security, highly rely on network-based
data management and processing. Zero trust architecture (ZTA) is an
emerging and necessary framework for cybersecurity to provide the
privacy and security of personal and sensitive data in such dynamic
environment, which is also introduced by the U.S. Department of
Defense (DoD) as the basis for next generation security systems. To the
best of our knowledge, this is the first work that discusses how zero
trust principles can become the driving force in ensuring security for
future wireless networks (5G/6G). In addition, we introduce an O-RAN
compliant conceptual intelligent ZTA framework based on artificial
intelligence (AI) engines and discuss how the existing AI algorithms
can be exploited to realize the premises of a ZTA. The ultimate goal of
the paper is to open and accelerate a new research direction in AI for
implementing the next generation of zero trust infused cybersecurity
2

systems.
3. Why intelligent zero trust architecture

Ubiquitous connectivity through 5G networks is perceived by the
U.S. DoD as a critical strategic technology that provides nations with
long-term economic and military advantage [13]. Next-generation net-
works are especially important for mission-critical communications
and tactical edge networks (TEN), involving a large volume of het-
erogeneous and resource-constraint devices. They provide necessary
computational resources (through cloud computing) and seamless, reli-
able, and robust connectivity through a wide range of new radio access
technologies (RAT), including satellite, UAV, D2D, and massive beam-
forming communications. The 5G mobile networks are further expected
to adopt a multi-RAT architecture in which different types of radio
access (RATs) are unified to provide seamless connectivity [14,15].

The deployment of a TEN, based on next-generation networks
(5G/6G), is cost-effective (both in terms of CAPEX and OPEX) while
programmable based on the needs of the particular environment.
Hence, the deployment time of TEN with varying environmental needs
to reduce significantly. However, perimeter-based security models ex-
hibit weaknesses in providing network assurance in a heterogeneous
and dynamic network environment. Further, the operation of intelligent
TEN might heavily rely on cloud-based services for data management
and processing. Hence, the data-centric model of ZTA for such highly
mobile networks is necessary for information security.

Even if perimeter security frameworks provide carefully-tailored
protocols for various functions of 5G networks, their static nature
still allows lateral movements in the network perimeter. Either due
to internal human errors, social engineering attacks, or dynamics of
5G networks, an authenticated subject (which is trusted) can acquire
unauthorized access to sensitive resources. Hence, i-ZTA will be the key
technology for secure communication and data sharing from core 5G to
tactical edge networks.

Challenges of defining network perimeters, for enforcing security
policies, and the potential lateral movements in traditional security ar-
chitectures are the main propellants of ZTA [16]. As discussed in [17],
‘‘trust is a vulnerability ’’ and the plausible solution to remove this
vulnerability is a security architecture without any underlying trust
assumption. The situation is exacerbated in 5G/6G architectures which
employ NFV and SDN with the goal of providing programmability and
scalability. In this network architecture, individual functions and ser-
vices are deployed as virtualized software running on general purpose
cloud infrastructure shared with untrusted third parties [18].

The rapid revolutionary developments in 5G network architecture
aim at performance improvement while the security frameworks are
lagging in addressing vulnerabilities in this new network environ-
ment. In virtualized network architecture and deployment, (1) network
perimeter is diluted, and (2) network operates on untrusted infrastruc-
ture. However, security mechanisms in traditional cellular networks, es-
pecially authentication protocols, assume strong trust relationships [8].
The assumption of trust contradicts the emerging architecture and
deployment model of beyond 5G networks. Hence, integrating ZTA
with emerging virtual 5G/6G networks becomes a necessary security
solution.

While recent research has focused on the necessity and advantages
of ZTA for network security, deployment of a comprehensive architec-
ture that controls the security process of all network accesses during its
entire life-cycle is still an open problem [19]. According to [20], ZTA
provides a systematic approach to addressing challenges of traditional
security frameworks, however, the deployment and management of
ZTA is challenging. Existing proposals for ZTA demonstrate integration
of partial zero-trust elements within a network security framework for
addressing known security vulnerabilities and attack scenarios. In [21],
a distributed intrusion detection and prevention system (IDS/IPS),
based on blockchain, is introduced to identify and remove compro-

mised endpoints in a network. This work can be considered as an
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Fig. 1. Disaggregated architecture of O-RAN protocol stack for distributed deployment of functional units on cloud platforms in a virtualized network.
extension of classical IDS/IPS solutions to a distributed architecture
consistent with ZTA solutions.

The problem of IDS/IPS within a ZTA architecture is also inves-
tigated in [22]. In this work, a solution to the problem of detecting
security attacks is introduced by implementing zero-trust mechanisms
at different layers of the open systems interconnection (OSI) model of
the communication protocol stack. However, the promise of ZTA is not
limited to detecting intrusion or security attacks. Rather, monitoring
the entire life-cycle of a network session is a fundamental requirement
of ZTA. In this regard, [23] proposes an authorization framework for
IoT networks which integrates an attribute-based access control with
a trust-level evaluation engine for continuous monitoring of a session
during its entire life-cycle. Further, a trust evaluation mechanism,
following a zero-trust strategy, is introduced in [24], for verifying the
trustworthiness of services deployed on a cloud platform.

3.1. Important of ZTA for beyond 5G networks

According to the current research, intrusion detection and contin-
uous verification of trust, between network entities, are the critical
components of a ZTA. As discussed below, the DoD zero trust reference
architecture expands the ZTA scope, in a systematic approach, by
introducing seven ZT pillars that require ZT protection. In this paper,
we introduce a conceptual ZTA framework that deploy the required
ZT mechanisms using AI engines. We also propose a solution for inte-
grating the proposed architecture with 5G O-RAN in an untrusted and
virtualized network environment (potentially with cloud deployment).

The O-RAN architecture introduces the concept of disaggregation in
which different layers of the communication protocol stack (in the
RAN) are divided into separate function units as shown in Fig. 1. A
detailed description of this architecture is discussed in [25]. Various
function units of O-RAN can be deployed on different cloud platforms,
from edge to fog computing, depending on the bandwidth and real-
time processing requirements. In fact, this disaggregated architecture
is the key feature of O-RAN in realization of NFV on cloud platforms
which provides significant programmability and scalability advantages.
The compromise is operating in an untrusted environment in which
different network functions use shared third-party infrastructure to
exchange information between different layers of the protocol stack.

The O-RAN architecture also introduces RAN intelligent controller
(RIC) that implements (closed-loop) control loops for network (RAN)
optimization. The RIC is divided into two near-real-time (near-RT),
with latency requirements between 10 ms to 1 s, and non-real-time
(non-RT, with larger than 1 s latency, components. The near-RT RIC
hosts applications, called xApp, that manage QoS requirements of UEs.
The non-RT RIC applications, called rApp, implement all management
3

and optimization functions with a periodicity of larger than 1 s in-
cluding network orchestration, traffic routing and monitoring RAN
components. The xApps can also include AI/ML engines that implement
the decision engines of the near-RT RIC while rApps in the non-RT RIC
control and manage the operation of the AI/ML engines.

The distributed architecture of O-RAN, and beyond 5G networks
in general, with information exchange over open interfaces through
Internet-based cloud platforms, broaden the surface of security attacks
on beyond 5G networks. As discussed in [25], the open architecture
of O-RAN can result in compromising the availability, data integrity,
confidentiality, and AI/ML security attacks. Further, inclusion of third-
party rApp and xApp in the RIC can provide attackers with the exploit
of taking control of different nodes of the network. In this view, a ZTA
framework, with real-time monitoring and risk assessment, and the ob-
jectives of maximum availability and least privileges, seems a necessary
and promising solution to protect the beyond 5G infrastructure from
emerging security threats.

Existing proposals for ZTA implementation focuses on IDS/IPS and
continuous authentication mechanisms in the application layer, above
the TCP/IP, in the Internet protocol stack. The main objective of
these ZTA solutions is protecting databases from unauthorized accesses
(detection and prevention at application layer). However, as discussed
in the previous section, the DoD reference ZTA requires ZT controls
over the entire access chain, from device and user to network envi-
ronment and DAAS. Within this model, different layers of the O-RAN
protocol stack in Fig. 1, for establishing and managing the connection
of mobile users to network resources, are the critical components of
the network environment that require ZT controls. Due to the com-
plexity and widespread adoption of 5G/6G networks for future critical
applications, we believe that integrating a ZTA framework within the
network architecture is crucial for protecting the infrastructure from
security threats. The main objective of this paper is thus introducing
such a comprehensive ZTA framework for integration within beyond
5G network architectures.

3.2. Zero trust security model

In classical cybersecurity models, the authentication process es-
tablishes trust for the network access control (NAC) in authorizing a
user/device to access data, assets, application, services (DAAS). How-
ever, in a ZTA, a successful authentication alone does not imply trust,
hence the name zero trust (ZT). Rather than a trust basis, the authen-
tication is a prerequisite for access in the ZTA. The trust is evaluated
using additional factors as discussed below.

The U.S. DoD reference ZTA defines seven ZT pillars as: user, device,
network/environment, application and workload, data, visibility and
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Fig. 2. Basics of zero trust architecture (ZTA) for authentication and authorization
including seven zero trust pillars.

analytics, automation, and orchestration. Every pillar is a focus area
in the implementation of a ZTA that requires appropriate ZT controls.
The details of capabilities and requirements of the pillars is outlined
in [11]. The ZT engines in the seven pillars provide the necessary
information for authorization. Under this model, as shown in Fig. 2,
a trust evaluation engine becomes a critical component of a ZTA for
access authorization.

Since authentication does not imply trust, the NAC in a ZTA re-
quires additional factors to evaluate trust and assess the risk of access
by a user/device. In this model, the role of multi-factor authenti-
cation (MFA) becomes critical. Various MFA mechanisms (especially
2-factor) has become the mainstream in existing security systems,
particularly using hardware/software tokens and bio-metrics for human
subjects [26–28]. However, the DoD reference ZTA goes further and
introduces continuous MFA (CMFA), a process which evaluates the
authenticity of a user during an active session. The CMFA plays two
critical roles in a ZTA: (1) supporting regular trust evaluation, and
(2) providing a wider visibility on the user device and its network
environment.

In addition to the CMFA, the trust evaluation engine also requires
event and anomaly detection as a critical component for access autho-
rization. An anomaly refers to suspicious activity in the network that
might be malicious. An event is a change in the network, user and/or
device behavioral patterns that might be malignant. The results of these
engines help the NAC in implementing a fine-grained and dynamic
policy for access authorization. The fine-grain access refers to micro-
segmentation of the network in which different types of access requests
(e.g., read or write to databases, accessing different applications and
services) are authorized individually. The dynamic policy enables NAC
to deny or grant accesses based on anomalies or events, detected in real-
time, or requiring a device to pass extra CMFA processes in different
network environments. Implementation of these engines are an impor-
tant application of AI/machine learning which enables next-generation
network security models.

The common features of the seven ZT pillars include real-time mon-
itoring (user, device, network environment, visibility and analytics),
risk assessment and trust evaluation (for access to data/application in
an environment), dynamic policy and decision making (for granting
access, automation, and orchestration). The i-ZTA proposed in this
paper introduces the AI engines for realizing the main features of the
seven pillars.

3.3. Zero trust principles

The main tenets of zero trust (ZT) are outlined in the special
publication 800-27 of the U.S. National Institute of Standards and
4

Fig. 3. Key zero trust principles for information security in untrusted networks.

Technology (NIST) [10]. The key ZT principles are summarized in Fig. 3
and explained below.

• Zero Trust: All network assets and functions, including devices,
computing resources, and services, are considered untrusted ir-
respective of the location in the network. Hence, all commu-
nications must meet the same security requirements as third
parties.

• Trust/Risk Evaluation: Trust evaluation and risk assessment are
conducted for every access request. The assessment is carried out
continuously (during the period of the access) and dynamically
(based on situational conditions).

• Least Privilege: Any access, if granted, should be authorized
with the least privileges. The access is only granted for a specific
resource (depending on the sensitivity of the resource) and is not
valid for a different resource.

• Dynamic Policy: A dynamic policy is necessary for making the
decision on granting access. The key decision factors include se-
curity state (credentials, software version/patches, location, etc.)
and behavioral attributes of the subject and network assets.

• Integrity Check: The security state of all network assets and
requesting subjects are monitored continuously, preferably in
real-time. The security posture of devices, and behavioral patterns
of users/network assets, are evaluated with an automated system
in terms of compliance with security policy rules.

3.4. Intelligent MED

The realization of ZT principles with static policies is overwhelming
and challenging. Automated real-time monitoring and dynamic security
evaluation are the key features of a ZTA. Further, with the grow-
ing volume of users, the ZTA components are dealing with big data.
Hence, intelligent monitoring, evaluation, decision-making (MED), us-
ing artificial intelligence (AI), are the critical enablers of ZTA in the
next-generation networks.

The MED components of an i-ZTA are shown in Fig. 4. The location
of different blocks in this diagram reflects the logical interaction of the
components and does not necessarily show their physical locations in
the network. In this paper, we use the following terminology when
referring to the i-ZTA. A subject is any user, application, or service
requesting access to a network resource. The network assets refer
to all devices, network infrastructure, and functions (including cloud
services) involved in the communication. The network resource con-
tains sensitive information that must be protected against unauthorized
access.
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Fig. 4. Logical components of the envisioned i-ZTA showing static security policy rules and AI engines for dynamic MED.
The core of an i-ZTA comprises of a policy enforcement point (PEP)
and a policy decision point (PDP). The PEP is the first point of contact
for access requests. It also establishes the connection between the
subject and the requested resource if an access is granted. The decision
on granting access is made by the PDP. It uses all available internal and
external information about the security state of the subject and network
assets for deciding.

The information used by the i-ZTA core to grant and monitor a
connection is provided by several peripheral modules as shown in
Fig. 4. We divide these modules into two categories of static (right side
of the figure) and dynamic (left side). The static modules (not specific
to i-ZTA) include data access policy, public key infrastructure (PKI),
identity (ID) management, and industry compliance. These modules,
collectively, define the security policy rules for secure communication
and integrity check rules. The policy rules can be dynamically adjusted
by the i-ZTA core.

The dynamic modules in the diagram of Fig. 4, are the distinct fea-
tures of an i-ZTA. These include continuous diagnostics and mitigation
(CDM), threat intelligence (for identifying new security vulnerabili-
ties), activity logs (behavioral information on user/assets and network
traffic), and security information and event management (SIEM) for
collecting information on long-term security state and potential attacks.

In addition to the peripherals, the core PEP and PDP functions
incorporate appropriate AI engines for realizing the entire MED chain.
Intelligent agent and portal (IGP) is the AI engine of the PEP which
provides devices with situational awareness. The processing engine
of PDP is an intelligent policy engine (IPE) that makes decisions on
granting access based on all information provided by INSSA, IGP, and
policy rules. The details of the corresponding learning algorithms will
be explained later in Section 5.

The i-ZTA of Fig. 4 divides the network into three logical, and
possibly physical, planes. Data communication between the subject and
network resources is carried out in data plane, which also includes
the initial access request by the subject. The i-ZTA components (PEP
and PDP) communicate in the control plane for making decisions and
configuring connections. These two planes also exist in the current 5G
network architectures. The third plane of the i-ZTA is metadata plane
used for communicating all data required by the AI engines.

4. Challenges and opportunities

The realization of an i-ZTA, with real-time processing of big data
might appear challenging. However, next-generation network architec-
tures provide appropriate computational resources and interfaces for
data collection needed by AI applications. In this section, we address
part of the challenges and solutions for realizing the envisioned i-ZTA.
5

4.1. Real-time processing

Seamless connectivity in beyond 5G networks implies that multi-
RAT technologies are used dynamically in a single session of data
communication [29–31]. Furthermore, heterogeneous devices, with
different security specifications, credentials, privileges, and computing
resources participate in the communication. Hence, real-time monitor-
ing and security evaluation of all involving devices is the necessity of
an i-ZTA.

Next-generation network architectures integrate NVF cloud comput-
ing for the realization of real-time functions for intelligent processing
engines, with commercial off-the-shelf hardware. A promising example
is the O-RAN architecture that provides (near-)real-time (10 ms to 1 s)
RAN intelligent controller (RIC), central (CU), distributed (DU), and
radio units (RU). While initial use cases of real-time engines in O-
RAN focus on connectivity management in multi-RAT and quality of
experience (QoE) optimization [32], integration of i-ZTA functions is
an emerging critical application.

4.2. Communication overhead

Dynamic access in multi-RAT also implies a broadened attack sur-
face. Third-party devices have now a wider range of access points
to the network. They can manipulate an authorized user equipment
(UE) to access network resources, or simply promote a hostile network
environment to increase the perceived risk of access, hence, forcing
the i-ZTA to decline access. Distributed location of network assets and
massive volume of UEs has also facilitated the class of unintrusive
precision cyber attacks which do not require privileged access to deploy
the attack [33].

Detection and mitigation of such a broad attack surface require an
analysis of network traffic by the i-ZTA, from UE to network assets.
This analysis implies collection of big data in the network. The O-
RAN architecture provides the E2 interface to collect data from CU
and DU nodes for monitoring network assets. Also, O1/O2 interfaces
are introduced for collecting machine learning data. Further, remote
E2 and O1/O2 interfaces facilitate data collection from remote UEs
and VNF. While the necessity of AI engines and interfaces in 5G
architectures is mainly justified for network control and optimization, the
deployment of i-ZTA is a third critical factor revealing the vital need
for integration of AI to 5G networks.

4.3. Computational requirements

The multi-RAT network and D2D communications allow attackers to
exploit UEs without intrusion into the network. Hence, the envisioned
i-ZTA requires all authorized devices to dynamically monitor their

network environment for potential risks, as part of the intelligent MED.
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Fig. 5. Architecture of multi-access edge computing (MEC) integrated at the edge of
5G network with i-ZTA core, IGP and federated learning (FL) components.

The major concern, however, is the limited computational resources of
UEs, especially IoT node and sensor devices. We argue that multi-access
edge computing (MEC) [34] in 5G networks can be leveraged to address
this issue.

The MEC is a prominent example demonstrating the unique ca-
pabilities of 5G networks, which brings the computing resources as
close as possible to the network edge. Hence, a high volume of devices,
possibly with high mobility, may have access to high performance
computing resources with low-latency connectivity. The MEC adapts a
similar service-based architecture (SBA) of 5G networks according to
3GPP specifications. The deployment of MEC can be considered as a
mapping onto a network application function (AF) interacting with
other network core functions.

An example of MEC architecture deployed in a local area data
network (LADN) is shown in Fig. 5. The MEC orchestrator is a 5G AF
with centralized functions for managing the operation of MEC hosts.
It also interfaces with the network exposure function (NEF) in the 5G
core for overall management. A unique feature of 5G networks enabling
the integration of this MEC architecture is the exposure of the network
core to the LADN. The 5G core network is able to steer traffic to the
applications in the LADN, where the MEC host operates.

The MEC hosts are deployed at the edge of 5G RAN to minimize la-
tency and improve user QoE. An interesting feature of this architecture
is the exposure of MEC hosts to radio information provided by the CUs
and DUs of the RAN. The MEC platform may use radio information,
e.g., signal power and quality, to further reduce latency by avoiding
unnecessary routing traffic via the core network.

While MEC enables the deployment of some intelligent MED compo-
nents, it is also protected by the i-ZTA. The 5G core incorporates appro-
priate functions such as NEF and policy control (for traffic steering) and
unified data management (for user authentication, authorization, and
service continuity) to provide untrusted AFs with requested services.
While these functions provide static security measures, the i-ZTA core
(Fig. 4) provides the dynamic security measures to authorize access to
the MEC and monitor the sessions.

5. Envisioned intelligent zero trust architecture and research di-
rections

In this section, we introduce a novel unified framework (i-ZTA)
with AI engines for information security in untrusted networks. The
envisioned i-ZTA opens new research areas in the application domain
of AI for information security. The key elements of the i-ZTA include:
6

• IPE (Intelligent Policy Engine): It employs an AI trust algorithm
to authorize access requests based on subject privileges and secu-
rity state, security policy rules, the network state, and a score that
reflects the confidence level of the access. Specifically, the IPE is
envisioned to employ reinforcement learning (RL) to maximize
usability with the least privileges.

• INSSA (Intelligent Network Security State Analysis): This en-
gine can employ such models as a graph neural network (GNN)
for the security state of the network. It carries out the risk
assessment in accessing a given resource in the network. The
INSSA also implements an anomaly detection to identify potential
attacks.

• IGP (Intelligent aGent/Portal): It is the user AI engine to model
the security state of a subject. The IGP analyzes the security
posture of the network traffic to the subject and provides it with
environmental awareness. The learning objective of IGP is to keep
a high confidence level of the subject in accessing the network
resources.

5.1. Overall architecture

The architecture of the i-ZTA integrated in the O-RAN architecture is
shown in Fig. 6. It exploits the O-RAN real-time processing and data col-
lection for realizing the intelligent policy engine and AI network state
analysis, and the MEC for intelligent agent and portal components of
MED. The O-RAN further provides appropriate interfaces for near-real
time monitoring of remote devices and services.

In our envisioned i-ZTA, the PEP is divided into three compo-
nents: agent, portal, and gateway. The agent is a lightweight software
module on every network asset requiring access to the resources. The
portal, residing on the PEP, performs a similar task but is intended
for resource-constraint devices, such as IoT and sensor devices. The
gateway is an agent residing in front of the network resource and is
directly configured by the policy administrator (PA).

The agent and the portal incorporate AI algorithms, that work
together in a federated learning approach, as described below. We
refer to the learning components of the agent and the portal as IGP,
collectively.

5.2. Intelligent agent/portal (IGP)

We define the environmental awareness (ENA) of a subject as the
first tenet of trust evaluation. The role of IGP is to provide the network
assets, that require access to the resources, with an ENA score, and a
model for their security posture. The subjects with higher ENA values
might obtain higher confidence scores in risk assessment by the IPE.

We envisage the agent to employ a reinforcement learning (RL)
engine that conducts three main tasks: (1) It analyzes the traffic of the
device in the network which provides an initial risk assessment on the
network environment; (2) It learns the flow of unnecessary communi-
cation in the device that may reduce its confidence level in accessing
certain resources; (3) It provides a model for the communication pat-
tern of the device which is passed along with an access request to the
PEP for overall risk assessment. As discussed in Section 3.2, dynamic
authorization is an important feature of a ZTA framework (Fig. 2).
Reinforcement learning enables i-ZTA to learn from observations in
real-time (user/device behaviors, events in accessing network resources
and newly detected anomalies) and adjust trust policies accordingly.

The portal is divided into two major components: (1) access request
management from resource-constraint devices without computational
capability to host the intelligent agent, and (2) a learning component
that supports federated learning of the agents. We envision the impor-
tance of federated learning for collaborative and distributed learning of
a comprehensive model for the network environment.

As discussed above, every agent employs RL to learn its network en-
vironment and best practices in communicating with network entities.
The RL model used by multiple agents can be a common model, trained
in the federated learning approach with the following clear advantages.
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Fig. 6. Architectural design of a 5G network, leveraging O-RAN, with integrated i-ZTA framework.
• By aggregating the experience of multiple agents, a more com-
prehensive model of the local network environment is trained by
distributed subjects.

• The visibility of individual agents on the network environment is
increased.

• It provides subjects with a model for a network environment that
is able to detect distributed attackers exploiting multiple subjects.

5.3. Intelligent network security state analysis (INSSA)

The second tenet of trust evaluation is the dynamic risk assessment
for every access request. In a 5G network, the mobility of heterogeneous
devices in a varying environment calls for a dynamic model of the
network state that provides information about the risks of accessing
a particular resource by a given subject. We propose using a graph
neural network (GNN) to model the state of the 5G network which is
of particular interest in risk assessment by the IPE.

Graph neural networks have been shown to be successful as a
scalable approach for resource allocation in large area wireless net-
works [35]. In these applications, the GNN models the channel state
between pairs of communicating nodes and the goal is an optimal
allocation of spectrum resources to the nodes. Further, recurrent GNNs
have been shown successful in space–time modeling of data [36]. The
INSSA employs a recurrent GNN to model the communication patterns
of a 5G network, over space and time, and the goal is to assign risk
scores (R-Scores) to the nodes such that the overall metric of security
assurance in granting an access is maximized.

The envisaged INSSA employs reinforcement learning to meet the
following objectives: (1) compliance with a set of security policy rules,
(2) authorizing accesses with the least privileges, and (3) maximizing
network usability. The RL algorithm dynamically assigns appropriate
scores to all nodes in the network so as an assurance score (as the
reward) is maximized, by inspecting how strictly the policy rules are
met by the nodes while the network is available to all users. The
training process is accelerated by transmitting periodic test vectors to
the devices and network assets. The response of the assets to the tests
are used in an iteration of the training.

A second critical task of the INSSA is anomaly detection. The goal
of this task is to detect and prevent potential attacks, such as DoS
and distributed DoS (DDoS), that target the PEP. Additionally, INSSA
protects the network against a more subtle DoS attack which we call
7

intelligent DoS (IDoS) in this paper. As discussed above, the i-ZTA
incorporates environmental information of the network to evaluate the
access request. A potential attacker can indirectly make the PE deny
access by promoting a hostile network environment, hence increasing
the risk of granting the access. The INSSA uses the GNN model of the
network to detect such activities and potential attacks.

The INSSA follows an adversarial learning approach [37] for risk
assessment and anomaly detection. In addition to the node risk scores,
the risk of operating in a network environment contributes to the
overall network assurance score. The block diagram of Fig. 7 illustrates
the flow of the proposed adversarial learning. While the GNN (as the
RL agent) attempts in maximizing network usability with the least
privileges, an adversarial network is trained with the objective of
maximizing privileges compliant with the security policy rules. The
result is a GNN model of the network trained to assess the risk of access
in the presence of intelligent distributed attackers exploiting network
assets.

The integration of risk assignment and anomaly detection into a
single learning model is beneficial in the view of meta reinforcement
learning [38,39]. Intrusion detection systems (IDS) using deep learning
has been a popular and classical example of AI application in the field of
cybersecurity for detecting malicious behavior [40–42]. However, these
IDS systems rely on diverse and heterogeneous malware datasets and
can still be vulnerable to zero-day attacks (not observed in training).
Alternatively, the few-shot learning perspective to meta-learning and
its capability in learning new tasks quickly is essentially important
in anomaly detection. The recurrent GNN model of the INSSA is also
beneficial as meta-learning algorithms require a memory of the last
action and states which is implicit in recurrent neural networks.

5.4. Intelligent policy engine (IPE)

The endpoint of trust evaluation is the IPE. Like the agent/portal
and INSSA, the IPE incorporates an AI engine to make the final decision
on granting a requested access based on the agent and network state.
The IPE employs a neural network with long- and short-term memories
to evaluate the risk of granting access to an agent based on all previous
activities of the agent and the network. The IPE provides a C-score as
the confidence-level of the access.

The IPE policy is optimized through an RL algorithm to minimize
the probabilities of false positives and false negatives. After making a
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Fig. 7. Adversarial learning methodology to maximize network assurance with objectives of minimum privileges, maximum usability and strict compliance with security policy.
decision (access grant or denial), the IPE monitors the security state
of the session (how strictly the agent conforms to the security policy
rules). The IPE also receives the future state of the agent from the INSSA
to evaluate the reward return corresponding to the decision. The IPE
uses the collected information to evaluate the risk of the agent for its
future transactions.

The memory of the IPE policy is an important feature for risk
assessment. A potential intelligent attacker does not deviate from the
security policy rules with observable traces. Rather, it attempts in
exploiting multiple network assets by taking incremental steps towards
malicious activities or unauthorized access to sensitive information,
distributed over space and time. While the spatial security state is
modeled by the INSSA, the IPE provides the temporal model.

It is important for the IPE to incorporate all previous and future
states of the subject and the network for risk assessment. We divide
the learning policy of the IPE into two sub-components with long- and
short-term memories. The short-term memory allows granting access
to agents which corrected their security state over time. The long-term
memory enables IPE to detect adversaries exploiting vulnerabilities
with incremental steps over time.

An example concept-level architecture of the IPE neural network
(NN) with long- and short-term information is shown in Fig. 8. The
NN consists of a few recurrent layers followed by convolutional layers.
It has been demonstrated that recurrent NN, such as long short-term
memory (LSTM), is powerful in temporal modeling of a time-series
signal and convolutional layers are capable of filtering noisy spectral
components and extracting local features of the signal [43]. Hence, the
IPE NN extracts temporal information on the security behavior of the
subject, over medium to long time periods, while the convolutional
layers extract local (shorter time periods) security features of the
subject.

It is envisaged that all components and AI engines, introduced
in this section, work together in a cohesive framework to meet the
enhanced security needs of military as well as commercial 5G/6G
networks in the future. Using this framework, sensitive applications
may benefit from widespread adoptability and low-cost deployment of
these networks without compromising information security.

The summary of acronyms used in the paper has been provided in
Tables 1 and 2.
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Fig. 8. Example of Neural network of the intelligent policy engine (IPE) extracting
medium- to long-term information (recurrent layers) and local security features (Conv.
layers) of network activitis.

5.5. Realizing i-ZTA within O-RAN RIC

The architecture of O-RAN with xApps and rApps of the RIC and
access to open interfaces for collecting data, monitoring and controlling
RAN components provides a highly flexible and programmable frame-
work for deployment of different control engines including network
access control (authorization) of the i-ZTA. In this section, we briefly
discuss a realization scenario of deploying i-ZTA within the O-RAN
RIC through xApp and rApps. A complete deployment leveraging cloud
platforms, including MEC and fog computing, for training, verifica-
tion and execution of AI/ML engines is a subject of future research.
For a detailed description of different open interfaces in the O-RAN
architecture, we refer an interested reader to [25].
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Table 1
Acronyms specific to i-ZTA.

Acronyms Definitions

CDM Continuous Diagnostics and Mitigation
CMFA Continuous Multi-Factor Authentication
DAAS Data, Asset, Application, Service
DDoS Distributed Denial-of-Service
IDoS Intelligent DoS
ENA ENvironmental Awareness
FL Federated Learning
GNN Graph Neural Network
IGP Intelligent aGent and Portal
INSSA Intelligent Network Security State Analysis
IPE Intelligent Policy Engine
MED Monitoring, Evaluation, Decision making
NAC Network Access Control
PA Policy Administrator
PDP Policy Decision Point
PEP Policy Enforcement Point
RL Reinforcement Learning
SIEM Security Information and Event Management
ZTA Zero Trust Architecture

Table 2
General acronyms (5G network).

Acronyms Definitions

AF Application Function
CU Central Unit
DU Distributed Unit
LADN Local Area Data Network
MEC Multi-access Edge Computing
N3IWF Non-3GPP InternetWorking Function
NFV Network Function Virtualization
O-RAN Open Radio Access Network
QoE Quality of Experience
RAT Radio Access Technology
RIC RAN Intelligent Controller
SBA Service-Based Architecture
SDN Software-Defined Networking
TEN Tactical Edge Network
TNGF Trusted Non-3GPP Gateway Function
TWIF Trusted WLAN InternetWorking Function
UE User Equipment
VNF Virtual Network Function

Among the three main i-ZTA engines, IPE is the heart of autho-
ization with near-realtime (RT) operation. This engine evaluates trust
nd makes decisions on granting/denying for every access request to a
etwork resource. The proposed IPE consists of three components: (1)
nvironment visibility and analytics (EVA), (2) user behavioral model
UBM), and (3) trust evaluation engine (TEE). Every component is im-
lemented as a microservice in the near-RT RAN intelligent controller
RIC). Hence, the components of IPE are implemented as xApps within
he O-RAN architecture. In short, EVA and UBM provide information
bout the radio environment and user network usage, respectively. The
EE uses these information to evaluate the trust for granting access to
resource. The decision is made based on a least privilege policy, user
riority and the sensitivity of the requested resource.

The EVA component of the IPE collects required data over the E2
nterface of the O-RAN. The xApp implementing EVA subscribes to
he distributed units (DU) of the O-RAN to receive key performance
ndicators (KPI) on the PHY, MAC and radio link control (RLC) for spe-
ific UEs. Important metrics collected by EVA include information on
hannel state and beamforming (location information of UEs), resource
tilization (user activity) and link reliability (potential interference).
hese metrics provide trust engines with a fine-grained visibility on the
adio environment for every UE.

The UBM xApp in the IPE subscribes to the central units (CU)
f the O-RAN, via E2 interface, to collect information mainly on the
raffic patterns. It also uses the KPIs pertinent to resource utilization,
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throughput, and load of the gNBs. The data collected for the gNB
provides information on the number of users, interference level, and the
presence of potential adversaries and jammers. The quality of service
(QoS) metrics of the traffic flows, network load and throughput can
be used as indicators of interference and jamming environment but
also as metrics for prioritizing UE accesses. The UBM implements AI-
based modeling of UE and network traffic patterns. The learnt pattern
is also used for event detection. We point out that an event is not
necessarily malicious. As an example, connection of a new UE to the
network or handover of existing UEs are malignant events. However,
an unexpected and abrupt change in a user traffic or QoS can be
suspicious. The trust engine uses the traffic patterns and detected events
in granting accesses.

The TEE in the IPE implements the trust evaluation engine. It uses
the information and behavioral models provided by the EVA and UBM
xApps as part of the features used in decision making. The TEE also
collects data about UEs from IGP via the A1 interface. (As explained
below, the IGP is implemented in the non-RT RIC.) The IGP provides
TEE with information about user activity in the global network do-
main including Internet traffic and connections over non-3GPP access
(e.g., 5G connection through WiFi access). This information comple-
ments those provided by EVA and UBM on the user activity over the
3GPP access (gNB) and radio environment. Based on these information,
the TEE outputs a soft-decision metric, e.g., a real number in the range
0 (min trust) to 1 (max trust), which also depends on the sensitivity
of the requested resource. It further generates a hard decision metric
on grant/deny for the access. The soft-decision metric can be used
in prioritizing accesses in congested conditions with limited physical
resource blocks.

The second main component of the i-ZTA is IGP that provides users
with environmental awareness. As discussed above, IGP is implemented
as an rApp in the non-RT RIC within the Service Management and Or-
chestration (SMO) framework of the O-RAN. Three main considerations
for deploying the IGP in the non-RT domain follows. First, the IGP
collects information on the users traffic in the global network including
data network and non-3GPP access. This information is available in the
SMO which hosts the non-RT RIC. Second, monitoring network traffic
does not require fine time resolution as in near-RT RIC (between 10 ms
and 1 s). The near-RT resolution is more suitable for packet-level timing
and inspection. Third, non-RT operation of the rApp implementing
the IGP implies lower communication overhead and online computa-
tional requirements for this engine. Hence, the IGP can be hosted on
lower complexity computing platforms equipped with general purpose
processors.

The IGP rApp subscribes to CU of the O-RAN over O1 interface (and
O2 interface when O-RAN components are deployed on the O-Cloud) to
collect data. It also interfaces with RU and DU (over O1/O2) mainly for
network monitoring and CMFA as described later. The data consumed
by IGP includes user session management information such as number
of sessions, traffic statistics, data network traffic, handover events and
user mobility. The CU interfaces with User Plane Function (UPF) and
the Access and Mobility Management Function (AMF), via N3 and
N2 interfaces, respectively. Further, the internetworking functions of
5G (responsible for establishing connections through non-3GPP access
networks) interface with UPF and AMF over N3/N2 interfaces. Hence,
the CU can provide IGP with required information about users network
activity. As discussed above, the IGP also sends this information, in a
compact representation (enrichment information), to the TEE over A1
interface for trust evaluation.

The second task of IGP is to provide UEs with a mechanism for
network monitoring. The information about user network activity (sent
over A1 interface) helps TEE to evaluate the trust of accesses requested
by UEs. The IGP is also responsible for providing UEs with a mutual
trust evaluation on network environment. For this task, the IGP col-
lects KPI reports from O-RAN components (RU, DU and CU) over O1

interface. The KPIs used for this task include registration success rate
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of slices, integrity KPIs (uplink/downlink latency), slice throughput,
upstream/downstream N3 interface and UE throughput. By learning
the temporal pattern of the performance metrics, the IGP derives
a behavioral model of the network entities (hardware and software
components) over time. Based on this model, the IGP provides UEs
with an assurance metric (e.g., a real scale between 0 and 1) indicates
trustworthiness of a traffic flow (bearer) to a UE.

Similar to IPE and IGP, the INSSA engine collects data from the CU
of the O-RAN corresponding to all UEs. The INSSA is responsible for
constructing a global model of the network. The objective of the INSSA
is twofold: (1) assigning risk scores to UEs and network devices (RAN
components), (2) global anomaly detection. The INSSA can be deployed
on a regional cloud (e.g., fog computing) with data collected over O1
interface.

The above i-ZTA functions provide soft-decision mechanisms for
verifying the trust of network components using a rich amount of
data available through the O-RAN interfaces. In addition to these
mechanisms, we also desire a trust verification mechanism with crypto-
graphic proofs. For this purpose, the i-ZTA also includes a CMFA engine
implemented as a rApp in the non-RT RIC of the O-RAN. This engine
evaluates trust, in a continuous process, at two levels: (1) trust between
i-ZTA functions, and (2) trust between i-ZTA and O-RAN components.

The CMFA engine can employ next hop chaining counter (NCC)
parameters along with cryptographic Hash functions to verify liveliness
and integrity of different network components and functions. The
CMFA engine triggers authentication requests for every component.
Each network component and i-ZTA function also maintains a local
NCC parameter. Upon receiving an authentication request from the
CMFA engine, an i-ZTA function (xApps corresponding to IPE and rApps
implementing IGP) responds back with the HD5 Hash of its software
image and its local NCC. In the authentication request, the CMFA
engine also sends the Hash of its own software image with the local
NCC of the target function. (The CMFA engine sends the authentication
requests over O1 interface to the xApps.) Hence, the target i-ZTA
function can also verify the trustworthiness of the requesting CMFA
engine. This process establishes the trust between i-ZTA functions.

For verifying the trustworthiness of O-RAN components, the CMFA
engine can use any of the IPE xApps or IGP rApps as a bridge to forward
authentication requests. We point out that all O-RAN components
(including xApps) support X.509 certificates for authentication. When
an IGP rApp receives an authentication request for O-RAN components
(RU, CU or DU), it forwards the request within an ZT-AUTH message
over O1 interface to the target component. This component responds
back with the Hash of a shared secret (established during the initial
authentication) and its local NCC. (The component also updates its local
NCC upon receiving every ZT-AUTH message.) Similarly, the IGP sends
authentication requests to IPE xApps through O1 interface for O-RAN
components. The xApps then forward the request within an ZT-AUTH
over E2 interface to the target component. The rApps and xApps receive
the response from O-RAN components, integrate them within the Hash
of their own image and local NCC, and forward the entire response to
the CMFA engine for verification.

6. Conclusion

Network assurance in the untrusted environment of 5G/6G net-
works demands dynamic authorization, risk assessment, and moni-
toring of network assets. Realization of zero trust (ZT) principles,
necessary for providing information security in such environments,
require real-time processing of big data. In our opinion, the envisioned
intelligent architecture (i-ZTA) in this paper can help enforce ZT prin-
ciples for tactical and commercial application by leveraging distinct
technologies of 5G networks as the key enablers of the i-ZTA. While
instances of ZTA realizations for smart IoT networks (relying on cloud-
based services for data management and processing) are emerging,
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we discussed how AI engines of the i-ZTA facilitate handling big data
encountered in a typical ZTA framework in the context of 5G/6G.

The i-ZTA adopts an SBA-based design with AI engines for real-
izing ZT principles in untrusted networks. The i-ZTA core includes
the intelligent policy engine (IPE) and the intelligent agent portal
(IGP) for dynamic authorization of access requests. The former uses
reinforcement learning, with the objective of maximizing an assurance
score, and the latter uses federated learning to provide users with
environmental awareness score (EVA). Dynamic monitoring of the
network assets is also realized with the intelligent network security
state analysis (INSSA) which employs graph neural networks (GNN)
for network modeling and adversarial learning for risk assessment. It
is our sincere hope that the i-ZTA vision for 5G/6G discussed in this
paper motivates new research directions in the application of AI for
providing information security in untrusted networks.
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