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a b s t r a c t 

The Internet of Things (IoT) is expected to require more effective and efficient wireless communications 

than ever before. For this reason, techniques such as spectrum sharing, dynamic spectrum access, extrac- 

tion of signal intelligence and optimized routing will soon become essential components of the IoT wire- 

less communication paradigm. In this vision, IoT devices must be able to not only learn to autonomously 

extract spectrum knowledge on-the-fly from the network but also leverage such knowledge to dynami- 

cally change appropriate wireless parameters ( e.g. , frequency band, symbol modulation, coding rate, route 

selection, etc.) to reach the network’s optimal operating point. Given that the majority of the IoT will be 

composed of tiny, mobile, and energy-constrained devices, traditional techniques based on a priori net- 

work optimization may not be suitable, since (i) an accurate model of the environment may not be readily 

available in practical scenarios; (ii) the computational requirements of traditional optimization techniques 

may prove unbearable for IoT devices. To address the above challenges, much research has been devoted 

to exploring the use of machine learning to address problems in the IoT wireless communications do- 

main. The reason behind machine learning’s popularity is that it provides a general framework to solve 

very complex problems where a model of the phenomenon being learned is too complex to derive or too 

dynamic to be summarized in mathematical terms. 

This work provides a comprehensive survey of the state of the art in the application of machine learn- 

ing techniques to address key problems in IoT wireless communications with an emphasis on its ad hoc 

networking aspect. First, we present extensive background notions of machine learning techniques. Then, 

by adopting a bottom-up approach, we examine existing work on machine learning for the IoT at the 

physical, data-link and network layer of the protocol stack. Thereafter, we discuss directions taken by the 

community towards hardware implementation to ensure the feasibility of these techniques. Additionally, 

before concluding, we also provide a brief discussion of the application of machine learning in IoT beyond 

wireless communication. Finally, each of these discussions is accompanied by a detailed analysis of the 

related open problems and challenges. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Internet of Things (IoT) - the term first coined by K. Ash-

on in 1999 [1] has hence emerged to describe a network of in-

erconnected devices - sensors, actuators, mobile phones, among

thers - which interact and collaborate with each other to at-

ain common objectives. IoT will soon become the most perva-
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ive technology worldwide. In the next few years, cars, kitchen ap-

liances, televisions, smartphones, utility meters, intra-body sen-

ors, thermostats, and almost anything we can imagine will be

ccessible from anywhere on the planet [2] . The revolution brought

y the IoT has been compared to the building of roads and rail-

oads during the Industrial Revolution of the 18th to 19th centuries

3] – and is expected to radically transform the education, health-

are, smart home, manufacturing, mining, commerce, transporta-

ion, and surveillance fields, just to mention a few [4] . 

As the IoT gains momentum in every aspect of our lives, the

emand for wireless resources will accordingly increase in an un-

recedented way. According to the latest Ericsson’s mobility re-

ort, there are now 5.2 billion mobile broadband subscriptions
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Fig. 1. Overall organization of the survey. 
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worldwide, generating more than 130 exabytes per month of wire-

less traffic [5] . Moreover, over 50 billion devices are expected to

be in the IoT by 2020, which will generate a global network of

“things” of dimensions never seen before [6] . Given that only a few

radio spectrum bands are available to wireless carriers [7] , tech-

nologies such as radio frequency (RF) spectrum sharing through

beamforming [8–10] , (DSA) [11–15] and anti-jamming technologies

[16–18] will become essential in the near future. These technolo-

gies usually require coordination among wireless devices to opti-

mize spectrum usage – often, they need to be implemented in a

distributed manner to ensure scalability, reduce overhead and en-

ergy consumption. To address this challenge, machine learning ma-

chine learning (ML) has been widely recognized as the technology

of choice for solving classification or regression problems for which

no well-defined mathematical model exists. 

The recent introduction of ML to wireless communications in

the IoT has in part to do with the new-found pervasiveness of ML

throughout the scientific community at large, and in part to do

with the nature of the problems that arise in IoT wireless com-

munications. With the advent of advances in computing power and

ability to collect and store massive amounts of data, ML techniques

have found their way into many different scientific domains in an

attempt to put both of the aforementioned to good use. This con-

cept is equally true in wireless communications. Additionally, prob-

lems that arise in wireless communication systems are frequently

formulated as classification, detection, estimation, and optimiza-

tion problems; for all of which ML techniques can provide ele-
ant and practical solutions. In this context, the application of ML

o wireless communications seems almost natural and presents a

lear motivation [19–21] . 

The objective of this paper is to provide a detailed insight into

he influence ML has had on the IoT and the broader context of

ireless ad hoc networks wireless ad hoc networks (WANETs). Our

ope is to elicit more research in the field to solve some of the

ey challenges of modern IoT communication systems. To begin,

e provide an overview of the ML techniques in Section 2 . In

ections 3 and 4 , we discuss the applications of ML to physical

ayer to improve the communication and acquire signal intelligence

espectively. Next, in Section 5 , we discuss how ML has been ex-

loited to advance protocol design at the data-link and network

ayers of the protocol stack. In Section 6 , we discuss the implica-

ions of hardware implementations in the context of ML. There-

fter, in Section 7 , we provide a brief discussion on the recent ap-

lication of ML to IoT beyond wireless communication. Finally, the

onclusion of this paper is provided in Section 8 . The overall struc-

ure of the survey paper is depicted in Fig. 1 . 

. Overview of machine learning techniques 

Before we begin, we would like to introduce some standard no-

ations that will be used throughout this paper. We use boldface

pper and lower-case letters to denote matrices and column vec-

ors, respectively. For a vector x , x i denotes the i th element, || x || in-

icates the Euclidean norm, x � its transpose, and x · y the Euclidean
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nner product of x and y . For a matrix H , H ij will indicate the ( i , j )th

lement of H . The notation R and C will indicate the set of real

nd complex numbers, respectively. The notation E x ∼p(x ) [ f (x ) ] is

sed to denote the expected value, or average of the function f ( x )

here the random variable x is drawn from the distribution p ( x ).

hen a probability distribution of a random variable, x , is condi-

ioned on a set of parameters, θ, we write p ( x ; θ) to emphasize the

act that θ parameterizes the distribution and reserve the typical

onditional distribution notation, p ( x | y ), for the distribution of the

andom variable x conditioned on the random variable y . We use

he standard notation for operations on sets where ∪ and ∩ are

he infix operators denoting the union and intersection of two sets,

espectively. We use S k ⊆S to say that S k is either a strict subset of

r equal to the set S and x ∈ S to denote that x is an element of the

et S . ∅ is used to denote the empty set and | S | the cardinality of

 set S . Lastly, the convolution operator is denoted as ∗. 

All the notations used in this paper have been summarized in

able 1 . The notations are divided into sections based on where

hey first appear and if they have been re-defined. Similarly, we

lso provide all the acronyms used in this paper in Table 2 

.1. Introduction to machine learning 

The primary purpose of this section is to provide a brief

verview of the field of ML itself as well as provide a fundamen-

al description of the algorithms and techniques presented as solu-

ions to the wireless communications problems introduced in sub-

equent sections. This section aims to be as rigorous as necessary

o allow the reader to understand how the presented algorithms

re applied to wireless communications problems but does not aim

o give an all-encompassing, comprehensive survey of the field of

L. Interested readers are urged to refer to [22–24] for a compre-

ensive understanding of ML. The material presented in this sec-

ion is given from a probabilistic perspective, as many of the con-

epts of ML are rooted in probability and information theory. The

est of Section 2.1 provides a kind of road map for Section 2 as a

hole. 

.1.1. Taxonomy 

Most introductory texts in ML split the field into two subdivi-

ions: supervised learning and unsupervised learning. We follow

uit and will make the distinction of which subdivision each pre-

ented algorithm falls under. As will be shown in later sections of

his paper, many problems in WANET can be solved using an ap-

roach called reinforcement learning (RL). RL in its most funda-

ental form can be viewed as a third and separate subdivision of

L, thus we will denote representative algorithms as such. It is

mportant to note that many advanced RL algorithms incorporate

echniques from both supervised and unsupervised learning yet we

ill still denote these as RL algorithms. 

Another common type of learning discussed in ML literature is

hat of deep learning (DL). We view DL techniques not as a sep-

rate subdivision of ML but as a means to achieve the ends asso-

iated with each of the three subdivisions stated above. DL typ-

cally refers to the use of a deep neural network (DNN), which

e present with more rigor later in Section 2.2.4 . Thus the “Deep”

ualifier denotes an algorithm that employs a deep neural network

o achieve the task. (ex: A deep reinforcement learning (DRL) algo-

ithm would use a DNN in a RL framework) 

.1.2. A note on modularity 

The concept of modularity is pervasive throughout engineering

isciplines and is certainly prevalent in communications. We adopt

his precedent throughout this text and present each of the algo-

ithms using a common learning algorithm framework. This frame-
ork is primarily composed of the model, the optimization algo-

ithm, the loss function, and a data set. 

At its core, a learning algorithm is any algorithm that learns to

ccomplish some goal given some data to learn from. A common

ormalism of this definition is given in [25] : “A Computer program

s said to learn from experience E with respect to some class of

asks T and performance measure P , if its performance at tasks T ,

s measured by P , improves with experience E .” While this defini-

ion of a learning algorithm is commonly agreed upon, formal def-

nitions of a task, experience, and performance measure are less

ndemic within the ML community, thus we provide examples of

ach. 

In the context of ML, tasks usually define some way of process-

ng an object or data structure. A classification task is the process

f assigning a class label to an input object or data structure. While

ifferent exam ples (objects) within the data set will give rise to

ifferent class labels, the task of assigning a given example a label

s the same for the entire data set. Other examples of tasks ad-

ressed in this text include regression (assigning a real value to an

xample) and structured output (assigning a separate data struc-

ure, with a pre-defined form, to an example). 

The performance measure, P , essentially defines the criteria by

hich we evaluate a given learning algorithm. In the case of clas-

ification, the performance is typically the accuracy of the algo-

ithm, or how many examples the algorithm assigns the correct

lass label to divided by the total number of examples. It is com-

on practice to divide the entire available data set into two sep-

rate data sets, one used for training the algorithm and one used

o test the algorithm. The latter, called the test set, is kept entirely

eparate from the algorithm while training and is used to evaluate

he trained algorithm. The performance measure is often a very

mportant aspect of the learning algorithm as it will define the be-

avior of the system. 

The experience, E , that a learning algorithm has while learning

ssentially characterizes the algorithm into one of the three sub-

ivisions defined earlier. Supervised learning algorithms are pro-

ided with a data set that contains examples and their associated

abels or targets. An unsupervised learning algorithm experiences

ata sets containing only examples and attempts to learn the prop-

rties of the data set. RL algorithms experience examples produced

y the environment with which they interact. The environment of-

en provides feedback to the RL algorithm along with examples. 

.2. Supervised learning 

.2.1. Overview 

Recall from the previous discussion that in a supervised learn-

ng setting the learning algorithm experiences a data set contain-

ng examples and their respective labels or targets. An example

ill typically be denoted as x and its label, or target, as y . To-

ether, we have training examples ( x, y ) ∈ D existing in our data

et D . In supervised learning problems, we attempt to learn to pre-

ict the label y from the example x , or equivalently, estimate the

onditional distribution p ( y | x ). Taking this approach, we will want

o obtain a model of this conditional distribution and we will de-

ote the parameters of such a model as θ. Assuming a set of i.i.d

ata D = { x 1 , x 2 , . . . x n } drawn from the data generating distribution

 data ( x ), the maximum likelihood estimator of the parameters, θ, of

 model of the data generating distribution is given as, 

ML = arg max 
θ

p model (D ; θ) = arg max 
θ

n ∏ 

i =0 

p model (x i ; θ) (1)

here p model is a function space of probability distributions over

he parameters θ. To make the above more computationally ap-

ealing, we can take the logarithm on both sides, as this does not
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Table 1 

Definition of notations. 

Notations Definitions 

Section 2 

x , x Training example; vector 

y , y Training target; vector 

ˆ y , ̂ y Training target estimate; vector 

D Set of training data 

θ , θ General model parameter; vector 

k ( · , · ) Kernel function 

G ( · ) Gini impurity 

H ( · ) Entropy function 

L (·, ·, ·) Loss function 

w Model weight vector 

W, U, V Model weight matrix 

b, w 0 Model bias term 

b, c Model bias vector 

σ ( · ) Sigmoid activation function 

K Convolution kernel 

I Input image 

S ( · , · ) CNN feature map 

L Neural network layer 

C k Cluster k 

μk Centroid of a cluster k 

d j ( · ) Discriminant function for a neuron j 

I ( x ) Index of minimum occurrence of discriminant function for x 

T j,I ( x ) Topological neighborhood function of I ( x ) at neuron j 

S i,j Distance from neuron i to neuron j 

η( t ) Learning rate parameter; a function of time 

γ Reward discount parameter 

γ ( · ) Reward discount parameter 

S State space 

A Action space 

P a ( · , · ) State transition function 

R a ( · , · ) Reward function 

r Observed reward 

s Observed state 

a Performed action 

q π ( · , · ) Action-value function 

Section 3 

s i , s −i Strategy of player i and strategy of all players except i 

U i ( s i , s −i ) Utility dependent on s i and s −i 

P the set of players 

S i the set of strategies of player i 

p i Penalty of player i for inducing interference I i ( s i , s −i ) to other players 

V c,d Value table for each channel device pair 

η Throughput learning rate of value table 

C ( ε, ω ) Collision function which depends on exploration factor 

ε and other parameters ω. 

C ∗ Collision threshold 

L ( ε) Loss function 

s n System State 

g n Channel gain 

b n Buffer occupancy 

n Index of the block 

N Maximum number of packets in the buffer 

B Size of the packet in bits 

P a Poisson distribution where a is the number of packets arriving at the buffer 

ν Expected number of packets that will arrived in one block 

p n Number of packets leaving the buffer in the n th block 

d n Number of packets dropped from the buffer in the n th block 

M Number of constellation points 

m n Bits per symbol in the n th block 

N sym Number of symbols in a block 

N 0 Noise Spectral Density 

ε∗ Acceptable BER threshold 

P n Transmission power in the n th block 

P̄ Long term average power consumption 

T System Throughput 

P d Packet drop probability 

r n Reward per block 

r ( t ) , r ( n ) Continuous and discrete representations of received signal 

a ( t ) Modulated amplitude as a function of time t 

φ( t ) Modulated phase as a function of time t 

g ( t ) Additive white Gaussian noise as a function of time t 

A ( . ) , P ( . ) Amplitude and Phase distortion functions 

αa , βa , αφ , βφ Scalar values representing channel parameters 

( continued on next page ) 
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Table 1 ( continued ) 

Notations Definitions 

I ρ Information potential 

G σ (. ) Gaussian kernel with standard deviation σ

ρ Entropy order 

y i Adaptive system output 

d i Desired system output 

e i Error measure between actual and desired system output 

L Mean squared error loss 

m i Transmitted symbol 

r i Received symbol 

μχ , var χ Mean and variance of mini-batch χ

m ( n ) Discrete representation of baseband OFDM modulated signal 

M ( k ) Discrete frequency domain representation of m ( n ) 

R ( k ), H ( k ), Discrete frequency domain representation of received signal r ( n ) , 

G ( k ) channel response h ( n ), and additive white Gaussian noise g ( n ) 

y i,e = ( v ,c ) Output of Neuron e = ( v , c ) in the hidden layer i 

z v Final v th output of the DNN 

i, d Antenna element and antenna element spacing 

a k , θ k , φk , Amplitude, incident angle, initial phase, and 

f 0 initial frequency of k th incident signal 

R (n ) , R mm ′ Spatial correlation matrix and its respective diagonal element 

�, F Incident angle matrix and hidden layer matrix 

Section 4 

N s Number of samples 

γmax Maximum value of the power spectral density of the normalized 

centered-instantaneous amplitude 

C lk l th order, k th conjugate cumulant 

δ0 Deviation of normalized amplitude from the unit circle 

x IQ 
k 

k t h raw signal training example; I/Q representation 

x A/ �
k 

k th raw signal training example; amplitude and phase representation 

x F 
k 

k th raw signal training example; frequency domain representation 

r k Received signal, vector form 

r q n Received signal quadrature value at index n 

r i n Received signal in-phase value at index n 

x ( n ) Transmitted signal, function of time 

y ( n ) Transmitted signal, function of time 

Section 5 

N Total number of nodes in the network 

N T Total number of time slots 

T Set of time slots 

SA Slot assignment matrix 

μxi Fuzzy state, a degree that time slot t x is assigned to node i 

U Fuzzy x-partition matrix 

ρ Channel utilization 

deg ( i ) Degree of edges incident to i 

E Energy function 

α, β Positive coefficients 

f Fuzzification parameter 

d ij Parameters used to define connectivity between i and j 

c r Collision rate 

P req Packet request rate 

t w Average packet wait time 

p t Probability of an active DoS attack 

�th Chosen threshold 

t Time slot 

h Channel number 

a i ( t ) Node i ’s action at time slot t 

R i Reward for the action 

T Temperature 

z ( t ) Channel observation 

h State history length 

EX t Set of experience samples at time t 

ux Upstream neighbor 

K Set of nodes 

E Set of unidirectional wireless link 

G(K, E ) Directed connective graph 

γ ij Score associated with edge ( i, j ) 

l Number of neurons 
˜ δ Normalized advance towards the sink 
˜ E Normalized residual energy 

R C Constant reward if the node is able to reach sink directly 

R D Penalty suffered if no next-hop is found 

R E Penalty if existing next-hop has residula energy below the threshold 

ε Probability of exploration 

( continued on next page ) 
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Table 1 ( continued ) 

Notations Definitions 

P j 
i j 

Transition probability 

α1 , α2 , β1 , β1 Tunable weights 

c Constant cost associated with consumption of resources like bandwidth, etc. 

E res 
i 

Residual energy 

E ini 
i 

Initial energy 

E i Energy cost function associated with E res 
i 

and E ini 
i 

Ē i Average residual energy 

D i Measure of the energy distribution balance 

SK Set of sinks 

SK p Subset of sinks 

H NB 
SK p 

Routing information through all neighboring nodes in NB 

Table 2 

Definition of acronyms. 

Acronym Meaning 

3GPP 3rd Generation Partnership Project 

5G 5th Generation 

6LOWPAN IPv6 over low power wireless personal area networks 

A3C Asynchronous advantage actor critic 

AC Actor–Critic 

ACK Acknowledgement 

AM Amplitude modulation 

AMC Automatic modulation classification 

ANN Artificial neural network 

AP Access point 

ASIC Application specific integrated circuit 

AWGN Additive white Gaussian noise 

AXI Advanced eXtensible Interface 

BEP Belief propagation 

BER Bit error rate 

BLE Bluetooth low energy 

BP Back-propagation 

BPSK Binary phase shift keying 

BPTT Back-propagation through time 

BSP Broadcast scheduling problem 

BSSID Basic service set identifier 

CART Classification and regression trees 

CPFSK Continuous phase frequency shift keying 

CPU Central processing unit 

CR Cognitive radio 

CR-IoT Cognitive radio-based IoT 

CSMA Carrier sense multiple access 

CSMA/CA Carrier sense multiple access/collision avoidance 

CDMA Code division multiple access 

CE Cognitive engine 

CMAC Cerebellar model articulation controller 

CNN Convolutional neural network 

CR-VANET Cognitive Radio-Vehicular Ad Hoc Networks 

DARPA Defense Advanced Research Projects Agency 

DBN Deep belief network 

DBSCAN Density-based Spatial Clustering of Applications with Noise 

DCNN Deep convolutional neural network 

DCPC Distributed constrained power control 

DMA direct memory access 

DoA Direction of arrival 

DoS Denial of service 

DRL Deep reinforcement learning 

DSA Dynamic spectrum access 

DSB Double-sideband modulation 

DL Deep learning 

DLMA Deep reinforcement learning multiple access 

DNN Deep neural network 

DP Dynamic programming 

DQN Deep Q-network 

EAR Energy-Aware Routing 

EM Expectation-Maximization 

FDMA Frequency division multiple access 

FHNN Fuzzy hopfield neural network 

FIFO First-in first-out 

FPGA Field-programmable gate array 

FROMS Feedback Routing for Optimizing Multiple Sinks 

FSK Frequency shift keying 

GA Genetic algorithm 

( continued on next page ) 
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Table 2 ( continued ) 

Acronym Meaning 

GRU Gated recurrent unit 

GFSK Gaussian frequency shift keying 

GMM Gaussian Mixture Model 

GMSK Gaussian minimum shift keying 

GPSR Greedy Perimeter Stateless Routing 

HDL Hardware description language 

HLS High-level synthesis 

HMFPM Hybrid QoS Multicast Routing Framework-Based 

Protocol for Wireless Mesh Network 

HNN Hopfield neural network 

II Initiation interval 

IoT Internet of things 

IPC Intelligent Power Control 

I/Q In-phase/quadrature 

JQP Join query packet 

JRP Join reply packet 

LATA Local Access and Transport Area 

LANET Visible light ad hoc network 

LMR Land Mobile Radio 

LO Local oscillator 

LoRa Long Range 

LoRaWAN Long Range Wide Area Network Protocol 

LoS Line of sight 

LS Least-squares 

LSTM Long short term memory 

LTE Long term evolution 

LTE-A Long term evolution-advanced 

M2M Machine-to-machine 

MAC Medium access control 

MAP Maximum a posteriori 

MANET Mobile ad hoc network 

MIMO Multiple input multiple output 

MDP Markov decision process 

ML Machine learning 

MLP Multi-layer perceptron 

MMSE Minimum mean square error 

MST Multi-stage training 

M-QAM M-ary quadrature amplitude modulation 

MVDR Minimum variance distortionless response 

MUSIC Multiple signal classification 

NACK Negative acknowledgement 

NB-IoT Narrowband IoT 

NCNN Noisy chaotic neural network 

NDP Node disconnection probability 

NE Nash equilibrium 

NLP Natural language processing 

NOMA Non-orthogonal multiple access 

NSG Non-cooperative strategic game 

OFDM Orthogonal frequency-division multiplexing 

OSPF Open shortest path first 

PAM Pulse-amplitude modulation 

PCA Principal component analysis 

PL Programmable logic 

POMDP Partially observable markov decision process 

PS Processing system 

PSD Power spectral density 

PSK Phase shift keying 

PSO Particle swarm optimization 

PU Primary user 

QARC Video Quality Aware Rate Control 

QAM Quadrature amplitude modulation 

QoE Quality of experience 

QoS Quality of service 

QPSK Quadrature phase shift keying 

RAM Random access memory 

RBF Radial basis function 

RBFNN Radial basis function neural network 

RF Radio frequency 

RFID Radio frequency identification 

RL Reinforcement learning 

RLGR Reinforcement Learning based Geographic Routing 

RN Residual network 

RNN Recurrent neural network 

RSS Received signal strength 

RSSI Received signal strength indication 

SAG Smart application gateway 

SAX Simple aggregation approximation 

( continued on next page ) 
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Table 2 ( continued ) 

Acronym Meaning 

SC Smart connectivity 

SC2 Spectrum Collaboration Challenge 

SC-FDE Single carrier frequency domain equalization 

SGD Stochastic gradient descent 

SIR Sensor Intelligence Routing 

SoC System on chip 

SOM Self-organizing map 

SNR Signal-to-noise-ratio 

SSB Single-sideband modulation 

SVC Sequential vertex coloring 

SVM Support vector machine 

SVR Support vector regression 

SU Secondary user 

TDMA Time division multiple access 

UAN Underwater acoustic network 

UF Unrolling factor 

UAV Unmanned aerial vehicle 

VANET Vehicular ad hoc network 

VQPN Video quality prediction network 

VQRL Video quality reinforcement learning 

WANET Wireless ad hoc network 

WASN Wireless ad hoc sensor network 

WBAN Wireless body area networks 

WBFM Wideband Frequency Modulation 

WIC Wireless interference classification 

WSN Wireless sensor network 
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change the optimization problem, which gives us, 

θML = arg max 
θ

n ∑ 

i =0 

log (p model (x i ; θ)) (2)

Additionally, we can divide the right hand side of the equation by

n , as this does not change the optimization problem either, and we

obtain the expectation of the log-probability of the model over the

empirical data generating distribution, 

θML = arg max 
θ

E x ∼ ˆ p data 
log (p model (x i ; θ)) (3)

Alternatively, we could formulate the maximum likelihood estima-

tion as the minimization of the KL divergence between the empir-

ical data generating distribution and the model distribution given

as, 

D KL ( ̂  p data || p model ) = E x ∼ ˆ p data 
[ log ( ̂  p data (x )) − log (p model (x ))] (4)

Since the data generating distribution is not a function of the

model, we can solve the same minimization problem by minimiz-

ing 

−E x ∼ ˆ p data 
log (p model (x )) (5)

which is exactly equivalent to the maximization problem stated in

the maximum likelihood formulation. The above is referred to as

the negative log-likelihood of the model distribution and minimiz-

ing it results in the minimization of the cross-entropy between the

data generating distribution and the model distribution. The sig-

nificance of this is two-fold. Firstly, the terms cross entropy and

negative log-likelihood are often used in literature to describe the

loss functions that are being used to evaluate a given ML model

and the above minimization problem is what is being referred to.

Secondly, this gives rise to the narrative that the model associated

with the maximum likelihood estimate is, in fact, the same model

that most closely resembles the empirical data distribution. This

is important considering what we want our model to do, namely,

produce correct labels or targets for data drawn from the data gen-

erating distribution that the model has not seen before. 

For completeness, the maximum likelihood estimator for the

conditional distribution, which provides a label’s probability given
n example, is given as, 

ML = arg max 
θ

n ∑ 

i =0 

log (p model (y i | x i ; θ)) (6)

or i.i.d examples, x i . 

Often times, regularization on the parameters of the model is

esirable, as regularization can lead to better generalization of the

odel. This is most frequently seen in the different types of neural

etwork models that will be described later in this section. Build-

ng on the maximum likelihood perspective of the loss function,

e can show that adding a regularization function to our opti-

ization function can be seen as inducing a prior over the model

arameters and subsequently changing our estimator to the maxi-

um a posteriori (MAP) point estimate. Inducing a prior probabil-

ty on the model parameter results in the following optimization

roblem, 

MAP = arg max 
θ

p( θ| D ) = arg max 
θ

log (p(D ; θ)) + log (p(θ )) (7)

ere, we have made use of Bayes’ Rule, the properties of logarithm,

nd the fact that the optimization problem does not depend on

he data generating distribution. If we wish to put a Gaussian prior

n the parameters, p( θ) ∼ N (0 , 1 
λ

I 2 ) we obtain a log prior propor-

ional to λθT θ, which yields the popular L2-Regularization scheme.

gain. we have made use of the fact that the Gaussian prior does

ot depend on the data distribution and contains constants that do

ot affect the optimization problem. Thus, the L2-Regularizer can

e seen as a cost associated with the magnitude of the model’s

arameters as well as the placement of a Gaussian prior on the

odel parameters. 

.2.2. Support vector machines 

The support vector machine (SVM) was initially developed to

erform the task of binary classification. Since their introduction

nto the ML community, SVMs have been successfully extended

o perform regression and multi-class classification tasks as well.

VMs are non-parametric models, meaning that the number of pa-

ameters that compose the model is not fixed whilst constructing

he model. In contrast, a parametric model would have a fixed
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h (x ) = h (x ) 
umber of tunable parameters defined before constructing the

odel. We will first define the SVM in the context of linear regres-

ion and then expand upon extensions to the algorithm later in the

ection. It is important to note here the change in notation of the

odel parameter vector from θ to w . Throughout the remaining

arts of this section, w is typically used when the literature sur-

ounding the algorithm refers to the parameter vector as a weight

ector and θ for a general parameter vector. The decision to forgo

otation uniformity was made in an attempt to keep our notation

onsistent with each algorithm’s original presentation, making the

ext more accessible to readers who may already be familiar with

ome of the algorithms. 

Linear regression is perhaps one of the most well known and

revalent linear predictive models known throughout the ML and

tatistical community. It is typically formulated as follows, 

 i = w 

T x i + w 0 (8)

here y i are the target values, x i are individual training examples

nd weights, w , are the model parameters. A common approach to

olving such a problem is to vectorize the output and input vari-

bles and solve the normal equations, giving a closed form solution

or the minimum mean square error (MMSE). A typical approach

o adapt this algorithm to perform classification tasks is the well

nown logistic regression given as, 

p(y = 1 | x ; w ) = σ (w 

T x ) (9)

here σ is the logistic sigmoid function given as, 

(x ) = 

1 

1 + e −x 
(10) 

ne favorable property of logistic regression is that it has a well

efined probabilistic interpretation that can be viewed as maximiz-

ng the likelihood of the conditional distribution p ( y | x ). An alterna-

ive formulation for a linear classifier is given in what is known as

he perceptron algorithm [26] . The perceptron algorithm aims to

nd a hyperplane in the input space that linearly separates inputs

hat correspond to different classes. It does so using a zero-one

oss function, meaning that the model is penalized equally for ev-

ry point in the training data that it classifies incorrectly. An obvi-

us shortcoming is that the algorithm converges to any hyperplane

hat separates the data; it need not be the optimal hyperplane. 

The linear SVM [27] attempts to find the hyperplane that best

eparates the data, where the optimal hyperplane maximizes the

argin between the nearest points in each class on either side of

he plane. While this solution is better, the true power of SVMs

omes from the kernelization of the linear SVM, which allows the

odel to find nonlinear boundaries between different classes by

epresenting the input data in a higher dimensional space. Ker-

elization of an algorithm is a process by which the parameters

f the model are written in terms of a linear combination of the

nput vectors, which allows the computation of the inner prod-

ct between a new input vector and the parameter vector of the

odel to be written as an inner product of the new input and the

raining inputs. A kernel function can then be substituted for the

nner products between training vectors, which can be intuitively

nterpreted as a function that returns a real value representing the

imilarity between two vectors. The kernelization of the SVM leads

o the kernel SVM [28] . The most common kernels used to kernel-

ze SVMs are the linear, polynomial, and radial basis function (RBF)

ernels, given as, 

 ( x i , x j ) = x i 
T x j , (11) 

 ( x i , x j ) = ( x i 
T x j + 1) d , and (12) 

 ( x i , x j ) = e −
( x i −x j ) 

2 

σ2 (13) 

espectively, where σ is a user defined parameter. 
.2.3. Decision trees 

Decision trees can be employed for both the tasks of classifica-

ion and regression. Decision tree algorithms are similar to nearest

eighbor type algorithms in a sense that labels for examples lying

ear each other in input space should be similar; however, they

ffer a much lighter weight solution to these problems. 

A decision tree is essentially nothing more than an aggregation

f if conditions that allow a new example to traverse the tree. The

ree is traversed until happening upon a leaf node, which would

pecify the output label. Decision trees can be constructed in a

umber of different ways, but a common approach is to create

rees that minimize some measure of impurity while splitting the

ata. There are many such impurity measures but each of them

ssentially conveys how non-homogeneous the data in either child

ode would be if a given split of the data were to occur. A child

ode containing only training examples of the same label is re-

erred to as a pure leaf and decision trees are often constructed to

ontain only pure leaves. 

We now discuss two of the most popular impurity functions

sed in decision tree construction. We first define the training data

s D = { ( x 1 , y 1 ) , . . . , ( x n , y n ) } , y i ∈ { 1 , . . . , c} where c is the number

f classes. Additionally, we have D k ⊆D where D k = { (x , y ) ∈ D : y =
 } and D = D 1 ∪ . . . ∪ D c . We then define the fraction of inputs in D

ith label k as, 

p k = 

| D k | 
| D | (14) 

nd the Gini Impurity of a leaf node and a tree, respectively as, 

 (D ) = 

c ∑ 

k =1 

p k (1 − p k ) , and (15) 

 

T (D ) = 

| D L | 
| D | G 

T (D L ) + 

| D R | 
| D | G 

T (D R ) (16) 

here D = D L ∪ D R , D L ∩ D R = ∅ . The idea is then to choose splits

n the tree that minimize this measure of impurity. Another pop-

lar impurity function is the entropy function. The entropy of the

ree has its derivation in using the KL-divergence between the tree

abel distribution and the uniform distribution to determine how

mpure it is. Leaving the derivation to the interested reader, we

efine, 

(D ) = −
∑ 

k 

p k log (p k ) , (17) 

 

T (D ) = 

| D L | 
| D | H 

T (D L ) + 

| D R | 
| D | H 

T (D R ) (18) 

s the entropy of a leaf and the tree respectively. While decision

rees can be strong classifiers on their own, they often benefit from

 technique called bagging. We omit the statistical derivation of

he benefits of bagging and simply state the essence of bagging:

y training many classifiers and considering the average output of

he ensemble we can greatly reduce the variance of the overall en-

emble classifier. Bagging is often done with decision trees as deci-

ion trees are not very robust to errors due to variance in the input

ata. 

Perhaps the most popular bagged algorithm is that of the Ran-

om Forest. Random forests are bagged decision trees generated by

he following procedure, 

• Sample m datatsets D 1 , . . . , D m 

from D with replacement. 

• For each D i train a decision tree classifier h i ( · ) to the maxi-

mum depth and when splitting the tree only consider a subset

of features k . 

• The ensemble classifier is then the mean output decision i.e. 
1 ∑ m 
m 

i =1 i 
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The number of trees m can be set to any number, provided the

computational resources are available. If d is the number of fea-

tures in each training example, the parameter k ≤ d is typically set

to k = 

√ 

d . 

2.2.4. Feedforward neural networks 

The original formulation of feedforward neural networks was

proposed in [29] . It can be seen as an extension to the previ-

ously mentioned perceptron algorithm with an element-wise non-

linear transition function applied to the linear classifier. This non-

linear transition function allows the hyperplane decision bound-

ary to take a nonlinear form, allowing the model to separate train-

ing data that is not linearly separable. The formulation for a given

layer, l , is as follows, 

z l = W 

(l) T a l−1 + b 

l (19)

a l = σ (z l ) (20)

where a l−1 are the outputs from the previous layer and may be

referred to as the activation values of the previous layer. In the in-

stance where the layer in question is the input layer, a l−1 would

be set as x , the training example input. The current layer’s activa-

tion values are thus denoted as a l and in the case of the output

layer, these values would be synonymous with 

ˆ y . The layer weight

matrix, W 

( l ) T , consists of column weight vectors for each neuron in

the layer and b 

l is a column vector containing the bias term for

each neuron. One common implementation approach to handling

the bias term is to add an additional parameter to each of the

weight vectors and append a 1 to the input vector. When a bias

term is omitted this formulation can be assumed unless otherwise

stated throughout the section. 

The nonlinear transition function, σ , is also referred to as the

activation function throughout literature and is often chosen from

a handful of commonly used nonlinear functions for different ap-

plications. The most widely used activation functions are the fol-

lowing, 

σ (z) = 

1 

1 + e −z 
, (21)

ReLU(z) = max (0 , z) , and (22)

tanh (z) = 

e z − e −z 

e z + e −z 
(23)

Additionally, the RBF kernel function described earlier in

Section 2.2.2 can be used as an activation function and doing so
Fig. 2. Standard framework of fee
ive rise to the radial basis function neural network (RBFNN) [30] .

o increase the complexity of the model, and thus its ability to

earn more complex relationships between the input features, net-

ork layers can be subsequently added to the model that accept

he previous layer’s output as input. Doing so results in a DNN.

he function of the network as a whole φ( x ) thus becomes, 

(x ) = W 

(3) σ (W 

(2) σ (W 

(1) x )) (24)

here the weight matrices W 

( i ) are indexed according to the layer

hey belong to. Intuitively, this allows the first layer to learn lin-

ar functions between the input features, the second layer to learn

onlinear combinations of these functions, and the third layer to

earn increasingly more complex nonlinear combinations of these

unctions. This formulation additionally gives rise to a nice graph-

cal interpretation of the model, which is widely used in literature

nd given in Fig. 2 . 

This graphical interpretation is also where the feedforward neu-

al network gets its loose biological interpretation. Each solid line

n Fig. 2 denotes a weighted connection in the graph. The input,

utput, and hidden layers are denoted as such in the graph and a

lose up of one node in the graph is provided. This close up calls

he single node a neuron, but it can equivalently be referred to

imply as a unit in this text and throughout literature. The close

p also shows the inputs to the neuron, the weighted connections

rom the previous layer, the weighted sum of inputs, and the ac-

ivation value, denoted as a l−1 
i 

, w 

l 
ik 

, z l 
k 
, and a l 

k 
, respectively. Oc-

asionally, a neuron employing a given activation function may be

eferred to as such a unit in this text and throughout literature, i.e.

 unit with a ReLU activation function may be called a “ReLU unit”.

The most common way to train neural networks is by way of

he stochastic gradient descent (SGD) optimization algorithm. SGD

s similar to well-known gradient descent methods with the excep-

ion that the true gradient of the loss function with respect to the

odel parameters is not used to update the parameters. Usually,

he gradient is computed using the loss with respect to a single

raining example or some subset of the entire training set, which is

ypically referred to as a mini-batch, resulting in mini-batch SGD.

his results in the updates of the network following a noisy gradi-

nt, which in fact, often helps the learning process of the network

y being able to avoid convergence on local minima which are

revalent in the non-convex loss landscapes of neural networks.

he standard approach to applying SGD to the model parameters

s through the repeated application of the chain rule of derivation

sing the famous back-propagation algorithm [31] . 

The last layer in any given neural network is called the out-

ut layer. The output layer differs from the inner layers in that the

hoice of the activation function used in the output layer is tightly

oupled with the selection of the loss function and the desired
d forward neural network. 
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tructure of the output of the network. Generally, the following

iscussion of output layers and loss functions applies to all neu-

al networks, including the ones introduced later in this section. 

Perhaps the simplest of output unit activation functions is that

f the linear output function. It takes the following form, 

ˆ 
 = W 

T a + b (25)

here W is the output layer weight matrix, a are the latent fea-

ures given by the activation output from the previous layer, and

ˆ 
 are the estimated output targets. Coupling a linear output acti-

ation function with a mean squared error loss function results in

he maximizing the log-likelihood of the following conditional dis-

ribution, 

p(y | x ) = N(y ; ˆ y , I) (26)

Another task that we have already touched upon in our dis-

ussion of SVMs and perceptrons is that of binary classification.

n a binary classification task, the output target assumes one of

wo values and thus can be characterized by a Bernoulli distri-

ution, p(y = 1 | x ) . Since the output of a purely linear layer has

 range over the entire real line, we motivate the use of a func-

ion that “squashes” the output to lie in the interval [0,1], thus ob-

aining a proper probability. We have seen that the logistic sigmoid

oes exactly this and it is in fact the preferred method to obtain

 Bernoulli output distribution. Accordingly, the output layer be-

omes, 

ˆ 
 = σ (w 

T a + b ) (27)

he negative log-likelihood loss function, used for maximum like-

ihood estimation, of the above output layer is given as, 

 (y , x , w ) = − log (p(y | x ; w )) = f ((1 − 2 y ) z ) (28)

here f (x ) = log (1 + e x ) is called the softplus function and z =
 

T x + b is called the activation value. The derivation of (28) is not

rovided here but can be found in [22] for the interested reader. 

For a multi-class classification task, the desirable output distri-

ution is that of the Multinoulli distribution. The Multinoulli dis-

ribution assigns to each class the probability that a particular ex-

mple belongs to it, requiring the sum over class probabilities for a

ingle example be equal to 1. The Multinoulli distribution is given

s the conditional distribution: ˆ y i = p(y = i | x ) . It is important to

ote that the output, ˆ y , is now an n -dimensional vector containing

he probability that x belongs to class i ∈ [0, n ] at each index i in

he output vector. The targets for such a classification task are of-

en encoded as an n -dimensional vector containing (n − 1) number

f0’s and a single 1, located at an index j which denotes that the

ssociated training example belongs to the class j . This type of tar-

et vector is commonly referred to as a one-hot vector. The output

unction that achieves the Multinoulli distribution in the maximum

ikelihood setting is called the softmax function and is given as, 

of tmax (z ) i = 

e z ∑ 

j e 
z j 

(29)

here z j is the linear activation at an output unit j. Softmax output

nits are almost exclusively coupled with a negative log-likelihood

oss function. Not only does this give rise to the maximum likeli-

ood estimate for the Multinoulli output distribution but the log

n the loss function is able to undo the exponential in the softmax

hich keeps the output units from saturating and allows the gra-

ient to be well-behaved, allowing learning to proceed [22] . 

.2.5. Convolutional neural networks 

The convolutional neural network (CNN) was originally intro-

uced in [32] as a means to handle grid-like input data more effi-

iently. The input of this type could be in the form of a time-series

ut is more typically found as image-based input. The formulation
f CNNs additionally has biological underpinnings related to the

uman visual cortex. 

CNNs are very similar to the feedforward networks introduced

reviously with the exception that they use a convolution opera-

ion in place of a matrix multiplication in the computation of a

nit’s activation value. In this section, we assume the reader is fa-

iliar with the concept of the convolution operation on two con-

inuous functions, where one function, the input function, is con-

olved with the convolution kernel. The primary differences from

he aforementioned notion of convolution and convolution in the

NN setting are that the convolution operation is discretized (for

ractical implementation purposes) and that it is often truly the

ross-correlation operation that is performed in CNNs rather than

rue convolution. This means that the kernel is not typically flipped

efore convolving it with the input function. This is also primarily

one for practical implementation purposes and does not typically

ffect the efficacy of the CNN in practice. 

Convolution in the context of CNNs is thus defined as the fol-

owing, for an input image I , 

(i, j) = (K ∗ I)(i, j) = 

∑ 

m 

∑ 

n 

I(m, n ) K(i − m, j − n ) (30)

here K is the convolution kernel and the output, S , is often re-

erred to as the feature map throughout literature. It is important

o note that the above formulation is for two-dimensional convo-

ution but can be extended to input data of different dimensions.

he entries of K can be seen as analogues of the weight param-

ters described previously ( Section 2.2.4 ) and can be learned in

 similar manner using SGD and the back-propagation (BP) algo-

ithm. Intuitively, one can imagine having multiple K kernels in a

ingle CNN layer being analogous to having multiple neurons in a

ingle feedforward neural network layer. The output feature maps

ill be grid-like and subsequent convolutional layers can be ap-

lied to these feature maps after the element-wise application of

ne of the aforementioned nonlinear activation functions. 

In addition to convolutional layers, CNNs often employ a sepa-

ate kind of layer called pooling layers. The primary purpose of a

ooling layer is to replace the output of the network at a certain

ocation with a summarization of the outputs within a local neigh-

orhood in the grid. Examples of pooling layers include max pool-

ng [33] , average pooling, L 2 norm pooling, and distance weighted

verage pooling. A max pooling layer would summarize some rect-

ngular region of the input image by selecting only the maximum

ctivation value present in the region as output from the pooling

ayer. Pooling layers improve the efficacy of CNNs in a few differ-

nt ways. First, they help make the learned representation of the

nput invariant to small translations, which is useful when aiming

o determine the presence of a feature in the input rather than

ts location. Second, pooling layers help condense the size of the

etwork since convolutional layers don’t inherently do so. A bi-

ary classification task taking image data with size 256 × 256 × 3

ill need to reduce the size of the net to a single output neuron

o make use of the output layer and cost function pairs described

reviously in Section 2.2.4 . Lastly, pooling layers lead to infinitely

trong prior distributions making the CNN more statistically effi-

ient [22] . A pictorial representation of a single convolutional layer

ollowed by a pooling layer is given in Fig. 3 . The figure depicts

 single convolutional layer applied to an input image of a water-

all plot of electroencephalogram data followed by a pooling layer.

ubsequent convolutional layers may follow the pooling layer in a

eep convolutional neural network (DCNN), and a nonlinear acti-

ation function may be applied to S ( i, j ) prior to the pooling oper-

tion. 

Some common adaptations applied to CNNs come in the form

f allowing information flow to skip certain layers within the net-

ork. While the following adaptions were demonstrated on CNNs
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Fig. 3. Convolutional and pooling layers of a CNN. 

Fig. 4. Equivalent graphical formulations for Recurrent Neural Networks. 
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and long short term memorys (LSTMs) (a type of recurrent neural

network (RNN)), the concepts can be applied to any of the net-

works presented in this paper. A residual network (RN), or ResNet

[34] , is a neural network which contains a connection from the

output of a layer, say L i −2 , to the input of the layer L i . This con-

nection allows the activation of the L i −2 to skip over the layer L i −1 

such that a “residual function” is learned from layer L i −2 to layer

L i . A highway neural network [35] is similar in that it allows a skip

connection over layers but additionally applies weights and acti-

vation functions to these connections. Lastly, a dense neural net-

work [36] is a network that employs such weighted connections

between each layer and all of its subsequent layers. The motiva-

tion behind each of these techniques is similar in that they attempt

to mitigate learning problems associated with vanishing gradients

[37] . For each of these networks, the BP algorithm used must be

augmented to incorporate the flow of error over these connections.

2.2.6. Recurrent neural networks 

The RNN was first introduced in [31] as a way to handle the

processing of sequential data. These types of neural networks are

similar to CNNs in the sense that they make use of parameter shar-

ing; however, in RNNs, parameters are shared across time steps

or indices in the sequential input. Recurrent nets get their name

from the fact that they have recurrent connections between hid-

den units. We denote this mathematically as follows, 

h 

(t) = f (h 

(t−1) , x 

(t) ; θ) (31)

where the function f could be considered the activation output of

a single unit, h 

( i ) are called the state of the hidden units at a time

i , x ( i ) is the input from the sequence at the index i , and θ are the
eight parameters of the network. Note, θ is not indexed by i , sig-

ifying that the same network parameters are used to compute the

ctivation at all indices in the input sequence. Output layers and

oss functions appropriate for the desired task are then applied to

he hidden unit state h . 

Two equivalent graphical representations of RNNs are provided

s reference in Fig. 4 . The left representation shows the network

rolled up” with a recurrent connection onto itself. The right rep-

esentation shows the network “unrolled” with the recurrent con-

ections now propagating information forward in time. We now

rovide the forward propagation equations for the hidden unit and

se the softmax output layer as an example of how the hidden

tate would be used as input to the output layer. A loss function

an then be applied to the softmax output as previously discussed

n the paper. 

 

(t) = Wh 

(t−1) + Ux 

(t) + b (32)

 

(t) = tanh (a (t) ) (33)

 

(t) = Vh 

(t) + c (34)

ˆ 
 

(t) = sof tmax (o 

(t) ) (35)

The matrices W, U , and V are the weight matrices shared across

idden units. They are used to weight the connections between

idden units from one time step to the next, between the input

nd hidden state at the current time step, and the hidden state

nd output at the current time step. The parameters b and c are

ias term vectors that are shared across time steps. 
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The loss for a single sequential training example is accumulated

ver the entire sequence, thus using a negative log-likelihood loss

or a sequence x ( t ) with output targets y ( t ) the loss would be, 

 ({ x 

(1) , . . . , x 

(τ ) } , { y (1) , . . . , y (τ ) } , θ) 

= −
∑ 

t 

log (p model (y (t) |{ x 

(1) , . . . , x 

(t) }; θ)) (36) 

he computation for the gradient of the loss with respect to the

odel parameters is involved and is out of the scope of this

aper. For the interested reader, SGD is commonly employed to

rain RNNs, employing the back-propagation through time (BPTT)

38] algorithm to compute the gradients. 

Many extensions to the described RNN model exist and are

orth mentioning. Perhaps the most obvious extension is to add

ore recurrent layers following the single recurrent layer that was

escribed above, resulting in Deep RNNs [39] . This provides simi-

ar advantages that were discussed in the motivation for extending

eedforward networks to multiple layers. Additionally, more recur-

ent connections can be added which may skip over time steps,

kip over layers, or even move information backward in time re-

ulting in bidirectional RNNs [40] . These additional recurrent con-

ections would be weighted and a nonlinear activation function

ould be applied in the same manner that the basic recurrent con-

ection operates. 

The most prevalent extensions to the original RNNs are those

f the LSTM and gated recurrent unit (GRU), developed originally

n [41] and [42] , respectively. LSTMs augment the traditional RNN

ramework by adding a self loop on the state of the network. This

elf loop is coupled with input, output, and forget gates which con-

rol whether input values are written to the state, the state values

re forgotten within the state, or the state values are written to

he output of the network, respectively. These adaptations allow

he network to better “remember” relevant information over longer

eriods in time. Each of the gates is weighted and have a logistic

igmoid activation applied to them, allowing the network to learn

ow to best use these gates with respect to the task. GRUs operate

n a similar fashion but instead use two gates, namely, the update

nd reset gates. The update gate controls to what degree the state

f the network at the given time step is written back to the state

ariable as well as what parts of the new state to write to the cur-

ent state. The reset gates control what parts of the current state

o use in the next computation of the new state. Both the LSTM

nd GRU have the ability to retain information over longer time

eriods and aim to mitigate the negative learning mechanics asso-

iated with vanishing gradients. 

Recurrent networks can also take forms that are significantly

ifferent from the models described above. In particular, a hopfield

eural network (HNN) [43] is a special type of recurrent network

ormulated to recover corrupted patterns. Specifically, it is a recur-

ent network where each unit is connected to all other units in

he graph except for itself. Additionally, the weight between units

s shared and each unit in the network encodes a binary state

alue, typically either 1 or −1 . This formulation aims to mimic the

orms of associative memory present in human cognition models

nd is often trained using a form of Hebbian Learning [44] . The fa-

ous summarization of Hebbian learning, “cells that fire together

ire together” drives the idea that when part of the pattern that

he HNN is trained to recognize is present, all of the units associ-

ted with that pattern will “fire” and the entire pattern will be

epresented by the network. Another interesting difference from

he previously described RNN structures is that the HNN does not

ake use of any type of training targets y . This makes the HNN a

ype of unsupervised learning algorithm, more of which we discuss

n further detail in the next section. 
.3. Unsupervised learning 

.3.1. Overview 

Unsupervised learning, a separate learning paradigm from the

revious described supervised learning, attempts to learn useful

roperties of the training data rather than learning to map inputs

o specific outputs. Examples of unsupervised learning tasks in-

lude probability density estimation, denoising, and clustering. Un-

upervised learning algorithms only experience the training data

xamples and are given no target outputs, which are obviously

referable in scenarios when data sets are produced without tar-

ets and it would be impractical for a human to go through and

abel the data set with a target value. Thus, without targets, unsu-

ervised learning algorithms usually try to present the data set in a

impler or easier to understand representation. This simpler repre-

entation most commonly manifests itself in the form of lower di-

ensional representations of data, sparse representations of data,

nd independent representations of the data. 

While some unsupervised learning algorithms draw techniques

rom previously mentioned supervised learning algorithms, they

mploy different types of loss functions. Usually, the best types of

oss functions to use in unsupervised learning settings will reward

he algorithm for preserving information about the input data but

enalize the algorithm for not representing the data in one of the

hree ways discussed in the previous paragraph. The reader may

e familiar with the Principal component analysis (PCA) algorithm,

hich is a great example of a linear unsupervised learning algo-

ithm that aims to decorrelate the input data. 

.3.2. Clustering algorithms 

Clustering algorithms are unsupervised learning algorithms that

ll share a similar goal of attempting to separate the input data set

nto some number of partitions, or clusters. The process by which

hese various algorithms group the data points into clusters is spe-

ific to each algorithm but is typically based on a metric which

ay be a function of distance to other data points, density of the

urrounding data points, or fit to a probability distribution, among

thers. Once a clustering algorithm has grouped the input data into

lusters, the algorithm is used to categorized new data points into

ne of the existing clusters. This categorization is computed using

he same metric the algorithm initially used to construct the clus-

ers. The primary shortcomings of clustering algorithms arise from

he algorithm having a lack of specification about what similarities

he clusters should represent in the data. Thus the algorithm may

nd some grouping of the input data that the designer did not in-

end for, rendering the resultant classifier ineffective. Next, a few

ommon clustering algorithms are described in further detail. 

Lloyd’s Algorithm for k-means clustering. Lloyd’s algorithm

or k -means clustering was initially introduced in [45] , and its pre-

entation has since been proliferated to a multitude of sources. The

lgorithm itself was developed to obtain a solution to the k -means

roblem, which concerns finding k points (cluster centroids) in the

nput space which minimize the distance between each training

ector and the nearest centroid. Formally the k -means problem is

s follows. Given a training data set D = { x 1 , . . . , x n } , x i ∈ R 

d and

n integer k , find k points μ1 , . . . , μk ∈ R 

d which minimize, 

f = 

∑ 

x i ∈ D 
min 

j∈ [ k ] 
|| x i − μ j || 2 (37) 

Intuitively, minimizing the above expression will attempt to

inimize the distance from any given training vector to the near-

st cluster centroid. The algorithm developed to find the centroids,

he set of μ1 , . . . , μk , can be broken out into a two step algorithm

hat is repeatedly performed until additional iterations no longer

urther minimize the expression above. We introduce a time pa-

ameter t to show how the centroids, and the clusters, C , . . . , C 
1 k 
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change as the algorithm progresses. For a random initialization of

centroids μ1 , . . . , μk the first step, called the assignment step, is

given as, 

 

(t) 
j 

= 

{ 
x i : || x i − μ(t) 

j 
|| 2 ≤ || x i − μ(t) 

m 

|| 2 ∀ m, 1 ≤ m ≤ k 

} 
, 

s.t. C 1 ∩ . . . ∩ C k = ∅ (38)

The following step, called the update step, computes the cen-

troids of the newly assigned clusters as follows, 

μ(t+1) 
j 

= 

1 

| C (t) 
j 

| 
∑ 

x i ∈ C (t) 
j 

x i (39)

The presented algorithm will converge once there are no fur-

ther reassignments of any training vectors to new clusters. Once

the algorithm is trained, inference is performed by computing the

distance from a new input vector, r , and associating it with cluster

j according to, 

arg min 

j 

|| r − μ j || 2 (40)

Gaussian Mixture Models (GMMs). Clustering using GMMs in

conjunction with the Expectation-Maximization (EM) [24] algo-

rithm is an example of a probability distribution based cluster-

ing algorithm and can be seen as an extension to k -means clus-

tering algorithms that allow the clusters themselves to take on

different shapes other than perfect circles. This ability is realized

through modeling each cluster as a Gaussian distribution with pa-

rameterized mean and covariance, and the entire clustered data

distribution as a weighted linear combination of Gaussian distri-

butions called a Gaussian mixture. Given a training data set D =
{ x 1 , . . . , x N } , x i ∈ R 

d and an integer K , model the distribution of a

given data point x as, 

p(x ) = 

K ∑ 

k =1 

πk N (x | μk , �k ) (41)

Where 0 ≤π k ≤ 1, 
∑ 

k πk = 1 , and μk ∈ R 

d , �k ∈ R 

d×d are the

mean vector and covariance matrix of the k th Gaussian distribu-

tion in the mixture. Following the maximum likelihood approach

introduced in the beginning of this section, the maximum likeli-

hood estimate for the GMM parameters is given as follows, 

log (p(X | π, μ, �) = 

N ∑ 

n =1 

log 

[ 

K ∑ 

k =1 

πk N ( x n | μk , �k ) 

] 

(42)

Where X is a matrix constructed from the concatenation of the

input training vectors. By maximizing the log-likelihood function

using the EM algorithm, we can obtain the optimal model param-

eters that give rise to Gaussian distributions that best describe the

training input data. To do so we first define, 

γ (z k ) = p(z k = 1 | x ) = 

πk N (x | μk , �k ) ∑ K 
j=1 π j N (x | μ j , � j ) 

(43)

Where z ∈ R 

K is a one-hot vector used to reference any one

of the K Gaussian components within the mixture. Thus, γ ( z k ) as

defined above can be interpreted as the probability that the k th

component of describes the training vector x best. This formula-

tion is useful for developing the EM algorithm for GMM. In order

to perform the EM algorithm, we must first solve for the maximum

likelihood estimates of each of the tunable parameters. Setting the

derivatives of log ( p ( X | π, μ, �) equal to 0, we obtain the following

equations for each of the GMM parameters, 

μk = 

1 

N k 

N ∑ 

n =1 

γ (z nk ) ( x n ) (44)
a  
k = 

1 

N k 

N ∑ 

n =1 

γ (z nk )( x n − μk )( x n − μk ) 
T (45)

k = 

N k 

N 

where, (46)

 k = 

N ∑ 

n =1 

γ (z nk ) (47)

Thus, in the expectation step of the EM algorithm, we compute

43) with the current model parameters; obtaining probabilities

epresenting which component distribution best describes each in-

ut vector. In the maximization step, we compute (44) –(47) using

he previously computed values of γ ( z nk ). Doing so obtains an es-

imate of the distribution parameters for each component distri-

ution that most likely describe each of the training vectors as-

ociated with that component. Iterating through both the expec-

ation and maximization steps yields the EM algorithm. E and M

teps are typically performed until the log-likelihood of the overall

odel increases only marginally in any given step. 

There are a few well-known difficulties in fitting GMMs with

he EM algorithm. Foremost, the log-likelihood function allows for

ingularities to arise, where one component attempts to describe

 single training point. This will send the standard deviation pa-

ameter of that component to 0 which will cause the likelihood

o tend to infinity. Such a situation can only be avoided by reset-

ing the distribution parameters at fault before restarting the fit-

ing process. The EM algorithm is also computationally expensive

nd typically needs to iterate many times before convergence oc-

urs. To mitigate the computational requirements, the Lloyd’s algo-

ithm described earlier can be used to obtain a better initialization

or the component distributions. 

Density-based clustering. Density-based clustering algorithms

im to assign clusters to areas in the input training vector space

hat are particularly dense with respect to the areas around them.

dditionally, such algorithms may mark points that lie in a low

ensity area as outliers, not requiring them to belong to any clus-

er. One of the most popular density-based clustering algorithms

s the Density-based Spatial Clustering of Applications with Noise

DBSCAN) algorithm, originally presented in [46] . The DBSCAN al-

orithm provides six definitions, from which the clusters of the

raining data set, D = { x 1 , . . . , x n } , are built. Two input parameters,

and minpts , and a distance function are required to be provided

o the algorithm by the designer. The usages of each are elucidated

n the definitions given below: 

• Definition 1 : The ε-neighborhood, N ε ( x ), of a training vector x i 
is defined to be the set of all points whose distance from x i is

less than or equal to ε. i.e. N ε ( x i ) = { x j ∈ D | dist ( x i , x j ) ≤ ε} 
• Definition 2 : Given ε and minpts , x j is directly density reach-

able from x i if x j ∈ N ε ( x i ) and | N ε( x i )| ≥ minpts 

• Definition 3 : A training vector x j is density reachable from x i if

∃ x i , . . . , x j such that x k + 1 is directly density reachable from x k . 

• Definition 4 : x j is density connected to x i if ∃ x k such that x j 
and x i are density reachable from x k 

• Definition 5 : A set C such that C ⊂ D and C � = ∅ , is a cluster if 

• ∀ x i , x j : if x i ∈ C and x j is density reachable from x i then

x j ∈ C 

• ∀ x i , x j ∈ C : x i is density connected to x j 
• Definition 6 : For clusters C 1 , . . . , C k of D , noise = { x i ∈ D |∀ j :

x i / ∈ C j } 
The algorithm for finding clusters within the training data set is

s follows. First, an initial random training vector is selected from

he training data, x i , and all points within the ε-neighborhood of x i 
re retrieved. If | N ε ( x )| is less than minpts the vector x is added to
i i 
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he noise set. If | N ε ( x i )| is greater than or equal to minpts , (at least

inpts number of training examples are directly density reachable

rom x i ) all points in | N ε ( x i )| are added to the current cluster in-

ex set. Using this initial set, all points that are density reachable

rom x i are then retrieved and added to the current cluster index

et. The algorithm then increments the cluster index and repeats

he preceding process selecting a new initial point in the training

et that has not been associated with either the noise set or any

luster set. 

The primary advantage of the DBSCAN algorithm is that the

umber of clusters need not be specified by the designer of the

lgorithm. Additionally, there are no constraints on the shape of

ny given cluster, as is the case implicitly with both Lloyd’s algo-

ithm and GMM clustering. DBSCAN also incorporates a noise set,

llowing the clusters to be robust to outliers. A disadvantage of the

BSCAN algorithm arises when clusters in the data have very dif-

erent densities, making it difficult to select the appropriate values

or ε and minpts . 

.3.3. Autoencoders 

Autoencoders were first introduced in [47] and have a simi-

ar structure to DNNs in that they have an input layer, an output

ayer, and at least one hidden layer, often called the code layer.

utoencoders, while similar in structure to supervised neural net-

ork models, are like other unsupervised learning methods in that

hey attempt to learn a mapping from the input data to a latent

epresentation that exhibits unique characteristics useful for per-

orming some task. Such latent representations are often learned

or the purpose of dimensionality reduction and de-noising; how-

ver, in either case, the formulation of the autoencoder splits the

odel into two parts: the encoder and the decoder. The encoder,

sually denoted as f , takes the input data and maps it to a latent

epresentation, or code, h , such that h = f (x ) . The decoder, g , then

ttempts to reconstruct the original input data from latent repre-

entation. The training signal for the autoencoder model is thus

omputed using a loss function assuming the following form, 

 (x , g( f (x )) , θ) (48)

nd may be any function penalizing the dissimilarity between the

wo arguments. Such a function will force the encoder to learn a

atent representation from which the original input data can be re-

onstructed by the decoder. While the loss function above necessi-

ates the output layer of the decoder to be the same size as the in-

ut layer of the encoder, the code layer of the autoencoder is often

maller than the input and output layers. Such is the case of au-

oencoders used for dimensionality reduction or feature learning; a

iagram of such an autoencoder structure is provided in Fig. 5 . This
Fig. 5. Generalstructure of an autoencoder used for dimensionality reduction. 
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n  
nsures that the code learned by the encoder contains only the

ost salient information of the data distribution that still allows

or reconstruction. In dimensionality reduction and feature learn-

ng autoencoders, the decoder becomes inert after the model has

een trained and only the encoder portion of the model is used to

erform the task. 

In denoising autoencoder models, the loss function is aug-

ented such that a corrupted version of the input data is given

o the encoder, and the loss is computed using the original input

nd decoder output. For original input, x , and corrupted version, ˜ x ,

he resulting denoising autoencoder loss function is given as, 

 (x , g( f ( ̃ x )) , θ) (49)

The corrupted version of the input data is typically sampled

rom some corruption process such that each corrupted data is not

orrupted in the same way. Unlike dimensionality reduction au-

oencoders, after the denoising autoencoder model is trained the

ntire model is kept and used to perform the task. 

.3.4. Self organizing maps 

The self-organizing map (SOM) [48] was originally introduced

s a type of unsupervised learning algorithm with the goal of per-

orming dimensionality reduction and data clustering. The reader

ay be familiar with the simple clustering algorithm referred to as

 -means clustering, covered in this text in Section 2.3.2 , in which

ach example in the training data is required to belong to one of

 different clusters. The obvious pitfall of this algorithm is that the

esigner of the algorithm must choose the parameter k prior to

onstructing the model, hence the model’s usefulness is contingent

n the user’s estimate of the appropriate number of clusters. The

OM algorithm avoids this by learning the appropriate number of

lusters. Additionally, the SOM algorithm typically aims to repre-

ent the training data as a two-dimensional grid, where examples

hat are near each other in the input topological space are embed-

ed near each other in the two-dimensional latent representation. 

The canonical SOM formulation can be viewed as a fully con-

ected single layer feedforward neural network, with units ar-

anged in a two-dimensional grid. As the network sees each input,

t computes the similarity between the input vector and each unit

n the grid using some discriminant function such as, 

 j (x ) = 

N ∑ 

i =1 

(x i − w ji ) 
2 (50)

here d j ( x ) is the value of the discriminant function at unit j , w j 

s the weight vector associated with unit j , and i ∈ [1, N ] indexes

he N dimensional input and weight vectors. This is often called

he competitive process of SOMs as it is representative of a type of

earning called competitive learning. 

Once the discriminant function is computed at each unit for a

raining example the unit with the least value for the discrimi-

ant function is selected for what is called the cooperative pro-

ess of SOM. The cooperative process attempts to update the neu-

ons in some local neighborhood around the neuron that provides

he closest representation of the input vector (i.e. the neuron with

he minimal discriminant function). This creates neighborhoods in

he map that will activate similarly for similar input values, thus

reating clusters within the map. The topological neighborhood is

sually defined as, 

 j,I(x ) = exp 

(−S 2 
j,I(x ) 

2 σ 2 

)
(51) 

here I ( x ) represents the index in the map where the minimal dis-

riminant function occurred and S j,i denotes the distance from a

euron j to a neuron i. σ is a parameter chosen by the designer
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and is typically decayed over time using the following schedule for

time-dependence, 

σt = σ0 exp 

(−t 

τσ

)
(52)

Once the topological neighborhood is computed, the weight

vectors associated with the units in the neighborhood are updated.

This is usually referred to as the adaptive process in the context of

SOMs. The change applied to the weight vectors is given as, 

δw ji = η(t) T j,I(x ) (t)(x i − w ji ) (53)

where η( t ) is the learning rate parameter and is also decayed over

time using a similar schedule to that of the σ parameter, 

ηt = η0 exp 

(
−t 

τη

)
(54)

This process is repeated many times for each training example in

the training data set, resulting in the SOM. 

2.4. Reinforcement learning 

2.4.1. Overview 

RL is a learning paradigm that can be considered separate from

supervised and unsupervised learning. That being said, RL tech-

niques often use ideas and algorithms from both unsupervised and

supervised learning. We first describe the problem formulation for

RL and then present a solution and how it can be extended to in-

clude concepts from other learning paradigms [49] . 

RL is built on the idea of an agent performing actions within

an environment, based on its observations of the environment. The

agent generally carries out actions according to a policy, which de-

fines how the agent behaves at a given time. The agent receives re-

ward signals, which define the ultimate goal of the algorithm, from

the environment which indicates how well off the agent is at the

time step the reward is given. The agent then aims to maximize

its cumulative reward by observing its environment and the re-

ward signal received, and then performing actions based on these

inputs. The maximization of the cumulative reward is typically de-

fined in terms of a value function. The value function differs from

the reward signal in that the reward represents what is a desirable

immediate setting and the value function represents how much re-

ward the agent can obtain in the future given the agent’s current

state. Additionally, RL problems typically define a model of the en-

vironment. The model is estimated by the agent to determine the

dynamics of the environment and is then subsequently used by the

agent to devise some sort of plan about how to act. 

RL problems, as described above, are usually formalized mathe-

matically using finite markov decision process (MDP). The tuple ( S,

A, P a ( · , · ), R a ( · , · )) defines the dynamics of the MDP as well as

the state and action spaces, S and A . At a given time step, an agent

observes a state s , chooses an action a , receives a reward r , and

transitions to a new state s ′ . The functions P a ( · , · ) and R a ( · , · )

define the transition probabilities between states and reward re-

ceived from the environment when transitioning to a new state.

The transition probability function takes the current state, s , and a

possible new state, s ′ and outputs the probability of transitioning

to that new state, conditioned on an action, a . i.e., 

P a (s, s ′ ) = P r(S t+1 = s ′ | S t = s, A t = a ) (55)

R is reward function such that it gives the reward obtained directly

after transitioning to state s ′ from state s via action a and is de-

fined as, 

R a (s, s ′ ) = E [ R t+1 | S t = s, A t = a ] (56)

A policy is a function which defines how the agent will act

given the state it is currently in. The policy is usually denoted as
( a | s ). Using such a policy, the agent moves about the environ-

ent and can start to construct a value function and action-value

unction based on the return they observe. The action-value func-

ion, q , for a policy, π is given as, 

 π (s, a ) = E π

[ 

∞ ∑ 

k =0 

γ k R t+ k +1 | S t = s, A t = a 

] 

(57)

here R t are the observed returns over time and γ is a scaling

arameter that is used to weight future returns less heavily than

mmediate returns. The action-value function can be plainly stated

s the expected return starting in a state s , taking the action a , and

ubsequently following the policy π . Obtaining values for state ac-

ion pairs allows for the agent to plan how to act in its environ-

ent. Equipped with the optimal action-value function, the solu-

ion to the MDP is merely choosing the action with the greatest

ction value. 

.4.2. Q-Learning 

The method of Q-Learning was introduced in [50] and is what is

alled an off-policy control algorithm. The off-policy qualifier sim-

ly denotes that the algorithm does not depend on the policy the

gent uses to navigate the environment. The Q-Learning is algo-

ithm is defined by the following update rule, 

(S t , A t ) ← − Q(S t , A t ) + α
[ 

R t+1 + γ max 
a 

Q(S t+1 , a ) − Q(S t , A t ) 
] 

(58)

sing such an update scheme for action-value pairs will lead to the

pproximation of the optimal action-value function independent of

he policy being followed. 

As one would imagine, the state and action spaces of some

L problem become extremely vast, making the storage of the

ction-value function for all state-action pairs impractical. One way

o overcome this issue is to introduce a function approximation

ethod which learns to provide values for state-action pairs. This

unction approximator could be one of the different types of ML

lgorithms discussed previously in this section. Such is the case

n the famous deep Q-network (DQN) [51] , where a deep convo-

utional neural network was used to approximate the action-value

unction when learning to play Atari games. 

.4.3. REINFORCE 

In the previously presented Q-Learning algorithm, the agent

oves about the environment according to some predetermined

olicy so that it may learn to accurately approximate the action-

alue function for the state and action spaces belonging to the en-

ironment. After learning the action-value function, the agent then

avigates through the environment by selecting the actions that

ap to the greatest action-value function in the given state. The

EINFORCE algorithm is inherently different, in that it attempts to

earn the optimal policy directly and is thus characterized as a pol-

cy gradient method. This distinction specifies that the training sig-

al is in fact a gradient with respect to the parameterized policy

unction and that the algorithm makes use of the policy gradient

heorem [49] , given as, 

J( θ) ∝ 

∑ 

s 

μ(s ) 
∑ 

a 

q π (s, a ) ∇π(a | s ; θ) (59)

here J ( θ) is a performance measure usually defined as some func-

ion of cumulative reward or reward rate, θ is the policy parame-

erization vector, and μ( s ) is a distribution over states which de-

otes the probability of being in any given state. 

From the policy gradient theorem, we wish to obtain an expres-

ion that specifies exactly how the policy parameters are updated.

o do so, we need an expression that provides information about
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ow the performance measure is affected by performing a specific

ction, A t , in a specific state, S t . Augmenting the policy gradient

heorem to allow the parameter update to be computed for every

ction taken at every state requires the distribution weighted sum

o be replaced by the expectation under the policy π of the gradi-

nt [52] . Doing so results in, 

J( θ) = E π

[∑ 

a 

q π (S t , a ) ∇π(a | S t ; θ) 

]
(60) 

= E π

[∑ 

a 

π(a | S t ; θ) q π (S t , a ) 
∇π(a | S t ; θ) 

π(a | S t ; θ) 

]
(61) 

= E π

[
q π (S t , A t ) 

∇π(A t | S t ; θ) 

π(A t | S t ; θ) 

]
(62) 

= E π

[
G t 

∇π(A t | S t ; θ) 

π(A t | S t ; θ) 

]
(63) 

here G t is the cumulative reward at time t . This gives rise to the

olicy parameter update, 

t+1 
. = θt + αG t 

∇π(A t | S t ; θ) 

π(A t | S t ; θ) 
(64) 

here α is a step size parameter. Intuitively, such an update

oves the parameter vector in a direction that increases the prob-

bility of taking action A t in state S t , proportional to the return

eceived for doing so, normalized by the probability of choosing

hat action. The above algorithm formulation allows for the pol-

cy function to be any differentiable function approximator, which

s often one of the neural network structures previously describes

n this section. Coupling a neural network with a softmax output

unction additionally provides the output as a distribution, which

s desirable as the policy at a given state should be a distribution

ver actions. 

.4.4. Actor–critic methods 

Actor–Critic methods [49] are policy gradient methods that

earn a state-value function in addition to the learned policy. The

ctor, a differentiable function approximator for the policy, learns

he optimal policy in a similar fashion described in the REINFORCE

lgorithm with exception that an eligibility trace is used to up-

ate the policy parameters allowing for online learning. The critic

hould be a differentiable state-value function approximator and

lso learns using eligibility traces, thus allowing the entire algo-

ithm to learn online. 

An eligibility trace vector, z , is a simple way of accumulating

arameters that need updating over some time. For an actor policy,

( A | S ; θ), parameterized by θ, and a critic action-value function,

ˆ 
 (S; w ) , parameterized by w , the respective eligibility trace vector

pdates for the parameters are given as, 

 

w ← γ λw z w + ∇ ̂

 v (S; w ) (65) 

 

θ ← γ λθz θ + ∇ ln (A | S; θ) (66) 

here λw and λθ are trace decay parameters, and γ is discount-

ng parameter. For episodic actor–critic methods, eligibility trace

ectors should be initialized to a zero-vector at the start of each

pisode. Accordingly, for each time step in the episode an action

 t is sampled from the policy approximator and taken in state S t ,

he agent moves to a new state, S ′ t , and is given reward R t . Thus,

he parameter updates for the episodic actor–critic algorithm are

iven for each time step as follows, 

← R t + γ ˆ v (S ′ t ; w ) − ˆ v (S t ; w ) (67) 
 ← w + αw δz w (68) 

← θ + αθδz θ (69) 

here αw and αθ are parameter space step sizes for each function

pproximator. Again, both function approximators for actor–critic

ethods can be implemented with any differentiable model de-

cribed within this section and is often some neural network struc-

ure. In [49] pseudocode for actor–critic methods can be found

long with their extensions to continuous RL problems and prob-

ems with continuous action spaces. 

. Machine learning for physical layer 

.1. State-of-the-art of IoT communication technologies 

IoT is a broad, emerging trend and hence applies to several

ey modern concepts that employ several technologies. In fact,

th Generation (5G) and IoT complement each other in that 5G

ireless networks will catalyze the growth of future IoT systems.

chieving the IoT vision has been a subject of extensive research to

dentify and standardize the communication protocols, ubiquitous

onnectivity, data storage, computation and analytics, IoT gateway

nd cloud management, dynamic service delivery, among others

53,54] . The capabilities offered by IoT are countless and find vast

pplications to improve the economic and social well-being of hu-

ans such as smart home, smart lighting systems, smart health-

are, assisted driving, environmental monitoring, mobile ticketing,

tc. IoT enables interconnection of various heterogeneous devices

hich communicate with each other without human intervention

n what is known as machine-to-machine (M2M) communication

55] . The limitless possibilities of IoT through Massive and Crit-

cal IoT will influence several aspects of everyday life. Massive

oT involves the large deployment of smart devices in smart agri-

ultural monitoring, smart grid, smart surveillance systems, smart

ome, etc. which require low-cost user equipment, low energy con-

umption, and scalability for massive deployment . Critical IoT, on the

ther hand, applies to critical operations such as remote healthcare

onitoring, smart traffic surveillance, smart industrial operations

hich requires low latency, highly reliable and safe end-user expe-

ience . Such large deployments as in Fig. 6 generate an enormous

mount of sensed data and requires seamless communication with

ach other and to the cloud. A critical consequence of such large

eployments is spectrum congestion which can hinder and prevent

he seamless interconnected operation as intended for the IoT ap-

lications. The large data generated from these devices require

igh-speed connection to the cloud while interaction among the de-

ices involving control signaling can be satisfied by low-speed wire-

ess links . Further, IoT devices are resource-constrained in terms of

vailable energy and computational resources. Consequently, a fun-

amental requirement for IoT applications is the low power op-

ration such that the deployed devices need not be replaced fre-

uently. There have been several standardization efforts to support

merging IoT communication. Few of these are Zigbee [56] , IPv6

ver low power wireless personal area networks (6LOWPAN) [57] ,

PL routing protocol, bluetooth low energy (BLE) [58] , EPCGlobal

59] , WirelessHart [60] , ISA100.11a [61] , MiWi [62] , Long Range

ide Area Network Protocol (LoRaWAN), narrowband IoT (NB-IoT),

nhanced-Machine Type Communications, and Extended Coverage-

lobal System for Mobile Communications for IoT. Among these,

igbee, 6LOWPAN, WirelessHart, ISA100.11a and MiWi employ IEEE

02.15.4 Physical and medium access control (MAC) layers while

oRaWAN adopts the Long Range (LoRa) physical layer. The com-

unication protocols at various layers of the IoT protocol stack are

hown in Fig. 7 . These standards portray the shared interest and
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Fig. 6. IoT network enabling smart city. 

Fig. 7. IoT protocol stack. 
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vision shared by standardization institutions and interest groups

around the world in realizing the IoT vision. 

The Ericsson report for massive IoT [63] project the number

of connected smart devices around the world will reach 28 bil-

lion by 2021. Such a surging number of devices pose a significant

constraint on the wireless communication capacity of current and

future deployments. The current static spectrum utilization poli-

cies lead to inefficient use of spectrum [53,64] . Several research

works have been conducted in this regard to demonstrate the ben-

efits of dynamic spectrum sensing, opportunistic spectrum access,

and cooperative communications [13,65–69] . Such studied inter-

actions between devices with strategic spectrum access method-

ologies introduce cognitive radio (CR) networks. Realizing the ex-

tent of capabilities that can be achieved with cognition, a new

paradigm termed cognitive IoT has been introduced. Such cognitive

radio-based IoT (CR-IoT) systems has been studied by [53,55,64,70–

73] . There are several ongoing standardization efforts to incorpo-

rate CR techniques for IoT communication such as ETSI Recon-
gurable Radio systems [74] , ECMA-392 [75] , IEEE 802.22b [76] ,

EEE 802.11af [77] . They allow dynamic spectrum sensing, spec-

rum access, and spectrum management. ECMA-392 is a cross-

ayer scheme that interfaces the MAC and physical layers and en-

bles wireless home and business networks to dynamically use TV

hite spaces. The CR aspect will have wide applications in disaster

esponse and management, wireless body area networks (WBAN),

mart-healthcare facilities, vehicular networks, smart grid, among

thers. In this regard, [78] discusses the challenges and require-

ents in realizing Cognitive Radio-Vehicular Ad Hoc Networks (CR-

ANET). The authors of [79] explored the applicability of ML tech-

iques and proposed a learning architecture for CR-VANET. The CR

ased smart grid architectures has been studied in [80–82] . The

orks in [83–85] integrates CR to WBAN architectures. The work

n [86] explores the potential benefits of incorporating CR in pub-

ic safety and emergency response communications. The cognitive-

oT aspect must address several key issues to allow efficient com-

unication between the devices, viz., 1. Resource-constrained IoT
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evices, 2. Communication between heterogeneous hardware, 3.

ense deployments in confined space, 4. Interference between the

evices, 5. Heterogeneous connectivity requirements, 6. Communi-

ation privacy and security, and 7. Large data management. 

The authors of [71] presented the COGNICOM+ concept, a hy-

rid architecture that jointly use cognitive engine (CE) and smart

onnectivity (SC) to allow optimal use of local gateways and cloud

omputing. The authors present the software and hardware archi-

ecture required to support the COGNICOM+ concept. The envi-

ioned IoT hybrid architecture houses the CE and SC in a smart

pplication gateway (SAG) that is local to the connected devices.

he CE is envisioned to employ compressed DL and game theory

uilt on a CNN application specific integrated circuit (ASIC) accel-

rators. The authors introduce SAG to perform local computing un-

ike cloud and fog computing aiming to reduce latency and costs

hile improving capacity, scalability, privacy, and security. The SC

odule collects spectrum sensing data from the deployed devices

hich are relayed to the CE. The CE gathers the collaborative spec-

rum sensing data to detect unoccupied spectrum bands and dy-

amically access them. Such collaborative spectrum sensing and

ccessing maximize spectrum utility. The CE applies reasoning to

ake a strategic decision to maximize certain user-defined objec-

ive. 

In game-theoretic sense, the authors consider each SAG as an

gent in a multi-agent non-cooperative strategic game (NSG). Let

he set of players (SAGs) be denoted as P and the strategy of

layer ( i ) be s i ∈ S i . Let s −i denote the strategy of all players

xcept i . The strategy in the COGNICOM+ aspect refers to deci-

ions on transmit power, data rate, accessible frequency bands,

nd interference to primary users. Each player has an associ-

ted utility U i ( s i , s −i ) which is resultant of their own strategy

nd strategies of other players. The NSG can be expressed as G =
P , { S i } i ∈ P , { U i ( s i , s −i ) } i ∈ P 

}
. Now, if the players are operating in a

reedy fashion, each player searches for the optimum strategy s ∗
i 

hat maximizes their utility such that 

ax 
s i ∈ S i 

U i ( s i , s −i ) . (70) 

A fundamental concept in NSG is Nash equilibrium (NE)

87] where each player adopts their best possible strategy while

eing fully aware of the strategies of other players. In NE, neither

layer gains a unilateral incentive by deviating from the strategy.

he authors propose to adopt a distributed optimization strategy in

 more cooperative manner where each player optimizes its strat-

gy to maximize their modified utility function, 

˜ 

 i ( s i , s −i ) 
�= w i U i ( s i , s −i ) − p i I i ( s i , s −i ) , (71)

here w i represent the weights of player i and p i is the penalty

or inducing interference I i ( s i , s −i ) to other players. In this way,

he collaborative operation of SAGs imparts a balance between the

reedy maximization of self utility and the interference caused to

ther players. 

The authors propose to use compressed DCNN in the CE. The

NN compression is achieved by weight/activation compression,

odel compression, and CNN computation acceleration in con-

olutional layers. Weight compression can be achieved by quan-

izing the pre-trained weights or quantizing during training pro-

ess which significantly reduces the memory requirements. Ad-

itionally, input feature maps can be compressed by converting

oating point to fixed point resulting in significant power and

omputational gains. Model compression is achieved by pruning

ess significant connection from the CNN. A similar strategy is

mployed in SqueezeNet [88] whereby smaller convolution filters

1 × 1, 3 × 3) are employed resulting in microarchitectures called

ire modules. The Fire modules are reconfigured by choosing be-

ween 1 × 1 and 3 × 3 filters forming larger CNN macroarchitec-
ures. SqueezeNet has been shown to achieve accuracy compara-

le to AlexNet [89] with 50 × fewer samples and less than 0.5 MB

odel size ( ≡ 510 × smaller than AlexNet). Finally, CNN compu-

ation acceleration can be attained by compressing each convolu-

ional layer by an equivalent low-rank approximations and adapt-

ng the upper layers until desired prediction performance is met. 

The authors of [90] presented end-to-end dynamic spectrum

anagement facilitated by IoT big data and ML algorithms. The

uthors propose the ML enabled IoT spectrum management sys-

em comprised of spectrum sensing and measurement collector,

eep analytics for spectrum activity learning, and spectral reason-

ng and decision-making. The authors implemented the proposed

pectrum management framework on the testbed [91] which con-

ects to distributed sensors via IoT service covering frequencies 70

Hz to 6 GHz. The sensor management, data storage, ML decision-

aking are performed in the cloud. The Land Mobile Radio (LMR)

and which ranges from 70 MHz to 1 GHz is considered in their

xperiment. The LMR band spans the very high frequency, ultra

igh frequency, and public safety channels. The incoming spec-

rum access requests could either be LMR service type or M2M

pplications. The spectrum sensing data from the deployed sen-

ors contain measured energy levels in the LMR bands. The en-

rgy level above a preset level identifies as an occupied channel.

he spectrum sensing data is processed in conjunction with the li-

ense database information to generate a channel occupancy time

eries for each channel every hour. The incoming spectrum sensing

ata is passed through usage characterization module which along

ith the candidate channel feature forecast module [92] generates

andidate and training channels. The candidate channels have un-

sed spectrum bands that can be shared with other users. The

raining channels represent all spectrum occupancy patterns of the

ncoming request. The candidate and training channels form the

pectrum-sharing training dataset comprised of features and shar-

ng labels. The sharing labels represent the sharing performance of

he users such as the delay incurred by users and the channel load-

ng with respect to the channel capacity. The channel is deemed

o be overloaded if the loading label exceeds 1 and available to

hare otherwise. A sharing predictor is trained using the training

ataset which assigns candidate channel and label (sharing per-

ormance). The authors used K-means clustering prior to training

he predictor with the gradient boosting tree (XGBoost) [93] algo-

ithm. The candidate channels are ranked for spectrum sharing for

ach incoming request as per the predicted sharing labels. Subse-

uently, the refining process improves the accuracy and robustness

f the sharing label prediction of the ranked candidate channels

efore predicting the final match. The authors compared the pre-

ictor performance trained with XGBoost, random forest and SVM

lgorithms and demonstrated faster training speed and improved

ccuracy with XGBoost. 

The work in [72] proposed a CR network architecture that em-

loys multi-stage online learning techniques to perform spectrum

ssignment to IoT devices with an aim to improve their throughput

nd energy efficiency. The authors considered a IoT network with

rimary users (PUs) and secondary users (SUs). The PUs are the

icensed users who have the primary right of accessing the chan-

els while SUs can opportunistically access the channels as it be-

omes available. The PUs are categorized into idle and active states

epending on whether they are actively transmitting. A collision

an occur if a SU sensed the channel idle and starts transmission

hile the PU moves into an active state and starts transmission si-

ultaneously. This happens as the PU has the exclusive right to the

hannel and will use it without sensing its availability. If a collision

ccurs the PU retransmits the data until successful transmission

rior to switching back to an idle state. The authors considered a

entral node that has access to all the IoT devices in the network

hich will perform the channel assignment based on the channel



20 J. Jagannath, N. Polosky and A. Jagannath et al. / Ad Hoc Networks 93 (2019) 101913 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

p  

i  

p  

p  

t  

e  

s  

c  

c  

s  

p  

s  

i  

c  

d  

n  

c  

r  

i  

t  

t  

t  

T  

n  

t  

s  

c  

a

3

 

m  

[  

c  

p  

r  

e  

t  

n  

a  

t  

h  

b  

d  

l  

t

 

p  

t  

c  

b  

o  

n  

f  

s

 

t  

c  

r  

b  

s  

o  

i  

s  

t  
sensing data from them. The PU traffic model is considered to be

either generalized Pareto or hyper-exponential while the SU traf-

fic could be either event-driven, periodic, or high volume payload

exchange. The proposed approach comprises a channel order se-

lection for sensing, and OFF time prediction for each channel. The

OFF time prediction allows the SUs to access the channels without

sensing. The authors exploit the fact that the central node has ac-

cess to all the IoT in the network and can gather the channel sens-

ing data from them to model the traffic characteristics. The central

node assigns one channel at a time to save energy consumed in

sensing all channels. If the sensed channel is deemed available by

the central node, the SU will access and proceed to transmission.

If the transmission was a success, the corresponding throughput is

returned to the central node else if a collision occurs it will in-

form the central node and switch to wait state. A value table ( V c,d )

for each channel ( c ) and device ( d ) is maintained at the central

node with their corresponding throughput ( T ). The value table is

updated as, 

 c,d ← ηT + ( 1 − η) V c,d , (72)

where η is the learning rate that affects the priority given to the

latest and past observations. The value table signifies the quality

of each channel to each device. The authors adopt a hill climb-

ing strategy to randomly swap some entries in the value table

and recalculate the value of the resultant configuration. If the new

channel-device configurations offer better quality compared to the

previous, the new configuration is saved while discarding the pre-

vious. This swapping continues until there are no new configura-

tions available that could improve the quality. The hill climbing

will work only if the value table maintained at the central node

is correctly estimated. However, this knowledge is unavailable ini-

tially and requires an exploration strategy to build the value ta-

ble. Accordingly, an ε− greedy strategy is adopted to randomly

explore different configurations for a fraction of time. Further, to

predict the OFF time of the channels, the central node is required

to learn the PU traffic distribution. Accordingly, a non-parametric

Bayesian learning method is employed to perform online learning

of the PU traffic distribution. Subsequently, a function C ( ε, ω ) rep-

resenting the number of observed collisions which is dependent

on the exploration factor ε and other factors ω is used. The objec-

tive is to achieve a value close to a predetermined threshold level

( C ∗) for C ( ε, ω ) . In order to achieve this objective, a loss function

L ( ε) = loss (C ∗, C ( ε, ω ) ) is optimized using SGD. The gradient loss

function with respect to ε is expressed as, 

∂L ( ε) 

∂ε
= 

∂ loss (C ∗, C ( ε, ω ) ) 

∂ε

∂C ( ε, ω ) 

∂ε
. (73)

However, the functional relationship between C ( ε, ω ) and the pa-

rameters ε, ω are unknown. In order to circumvent this, the au-

thors adopted a Simultaneous Perturbation Stochastic Approxima-

tion [94] that allows performing SGD while the functional relation-

ship is unknown. The predicted OFF time allows the central node

to assign skip period to the IoT devices enabling them to use the

channel directly without sensing. The authors demonstrated using

simulations that the proposed approach requires less channel sens-

ing and achieve comparable throughput while not exceeding the

collision threshold C ∗. 

3.2. Adaptive physical layer for cognitive IoT frameworks 

The signal processing techniques that enable the physical layer

functionalities have a direct impact on the data rate and sensitivity

of the radio. With the increasing number of IoT devices that com-

municate over networks, some of which stream multimedia data,

there is a growing need for high speed, low latency, and higher ca-

pacity systems. IoT devices are often deployed densely with several
evices interconnected and communicating in the same spectrum

osing severe constraints on bandwidth. To enable communication

n such dense IoT networks, several challenges such as interference,

ower and bandwidth constraints come into play. Adaptive signal

rocessing is a well-researched topic aimed around suppressing in-

erference and noise from received attenuated signal samples by

stimating the interference plus noise covariance from the received

amples and suppressing their effect to improve the spectral effi-

iency of the system [95–97] . Another well-known approach to in-

rease spectral efficiency is to adjust the modulation and coding

cheme on-the-fly based on instantaneous channel conditions. The

romising capabilities of multiple input multiple output (MIMO)

ystems to increase channel capacity has led to their adoption

n wireless communication standards. Significant performance gain

an be achieved by learning and estimating the varying channel

ynamics and nullifying the channel’ effect from the received sig-

al samples to estimate the actual transmitted bits, in what is

ommonly known as adaptive channel equalization. Research sur-

ounding the physical layer has historically been aimed at push-

ng the boundaries against the norm to provide increased agility

o the radios, subsequently enhancing their performance. Enabling

he radios with cognitive skills at the physical layer can revolu-

ionize the wireless communication capability of the IoT devices.

he ML based solutions can transform the IoT framework into cog-

itive IoT that can adaptively decide which actions are necessary

o achieve a certain objective based on parameters learned by the

ystem. This section will explore the various aspects of signal pro-

essing at the physical layer and how ML based solutions can offer

 better alternative. 

.2.1. Adaptive rate and power control 

RL based solutions have been extensively used in wireless com-

unications to estimate the dynamic system model on the fly

98–106] . In the context of the physical layer, RL based solutions

an extensively improve the system data rate, bit error rate, good-

ut ( i.e. , the amount of useful information that successfully ar-

ived at the destination over the time-varying channel) and energy

fficiency [107–110] . Adaptive rate control can serve as a useful

ool to selectively adapt the data rate depending on the instanta-

eous channel conditions. Such flexibility aids the system in lever-

ging the channel statistics to its benefit, essentially maximizing

he channel utilization. IoT devices are often battery powered and

ence constrained in power. Each layer of the protocol stack must

e designed to reduce the energy consumption and prolong the

evice’ lifetime. Therefore, adaptive power control at the physical

ayer is imperative to the longevity of the device and consequently

he IoT network lifetime. 

In [111] , an adaptive rate control strategy based on RL is pro-

osed to learn the dynamically varying channel conditions. The

ime-varying fading channel is modeled as a finite state Markov

hain, whose channel state transition probabilities are unknown

ut the instantaneous channel gains can be estimated. Now the

ptimization problem forms a MDP which can be solved in dy-

amic programming (DP). However, the DP approach is suited best

or static systems and hence would not be suitable for a dynamic

ystem where the channel statistics vary with time. 

In this work, the authors propose to use Q( λ)-learning [49] to

rack the varying environmental changes in pursuit of the optimal

ontrol policy online. Q( λ)-learning is a popular RL based algo-

ithm used to solve MDP when the system’s state transition proba-

ilities are unknown. The Q( λ)-learning algorithm is similar to the

tandard Q-learning except that it updates the learning rate based

n the Q value of the state-action pair. The incremental learn-

ng process involves the learning agent transitioning from system

tate of one block to another at the next block by choosing an ac-

ion. For each chosen action, the agent observes the reward and
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odifies its control policy with an aim to maximize the expected

eward for future actions. This foresighted iterative learning pro-

ess will repeat at each block and the agent will eventually con-

erge at the optimal policy. 

In this context, the objective is to find a rate-control scheme

hat maximizes the system throughput subject to a fixed bit er-

or rate (BER) constraint and long-term average power constraint.

he system state is characterized by the instantaneous channel

ain and buffer occupancy as s n = { g n , b n } . The receiver estimates

he channel gain and feeds back to the transmitter. In a practi-

al system, this could be accomplished by having the receiver and

ransmitter exchange estimated statistics via control packets us-

ng a separate control channel. Consider the transmission buffer

s a first-in first-out (FIFO) queue that can hold a maximum of

 packets each of size B bits. The packet arrival process to the

uffer follows a Poisson distribution P a = 

νa e −ν

a ! , where a is the

umber of packets that arrived at the buffer and ν is the expected

umber of packets that will arrive in one block. The number of

ackets dropped from buffer in the n th block can be expressed

s d n = max [ b n −1 − p n −1 + a n − N, 0 ] , where p n is the number of

ackets leaving the buffer in the n th block. 

Consider an M-ary quadrature amplitude modulation (M-QAM)

ystem which, based on the learning agent’s rate-control policy,

an change the number of bits per symbol (log 2 ( M )). There are nu-

erous ways to change a system’s transmission rate; (i) vary cod-

ng rate, (ii) vary modulation scheme, i.e., constellation size, and

iii) careful combination of both. Let us denote the bits per symbol

n the n th block as m n = { 1 , 2 , 3 , . . . , K} and the number of symbols

n a block as N sym 

. Then, the number of packets that can be trans-

itted in the n th block is p n = 

m n N sym 

B , referred to herein as rate.

or a W bandlimited system operating in an additive white gaus-

ian noise environment with noise spectral density N 0 , the mini-

um transmission power required to maintain an acceptable BER

 ε∗ ) in the n th transmission block is, 

 n ≥ W N 0 

g n 

(− log 5 ε∗)(2 

p n B/N sym − 1) 

1 . 5 

. (74) 

ow, the long-term average power consumption can be expressed

s, 

 ̄= lim 

n −→ ∞ 

1 

n 

n ∑ 

i =0 

P i . (75) 

he rate control scheme must now aim to maximize the system

hroughput ( T = ν(1 − P d ) ) subject to the BER and average power

onstraints. Here, P d is the packet drop probability. This escalates 

o a dual objective optimization; maximizing system throughput

nd minimizing average power. This multi-objective optimization

ill be solved to arrive at a Pareto-optimal solution (rate control

olicy). Q( λ)-learning aims to find the optimal control policy by

stimating an action-value function for each state-action pair. The

ction-value function is the long-term discounted reward if the

ystem starts at state s n taking an action p n . The reward per block

or taking an action/transmission rate p n at a state s n has a La-

rangian form which essentially implies the system gets a larger

eward if the packet drops and transmission power is lower. The

egative cost (reward) per block can be expressed as, 

 n +1 = −[ E (d n +1 ) + λP n ] . (76) 

he Q( λ)-learning can be solved in a way similar to the standard

-learning except here the learning rate ( ρ) is updated based on

he state-action pair which is kept a constant in the standard Q-

earning. 

= r n +1 + γ Q(s n +1 , p 
∗
s n +1 

) − Q(s n , p n ) , (77)

here γ is the discount factor and p ∗s n +1 
is the action which max-

mizes the action-value function Q(s n +1 , p 
∗
s n +1 

) . The Q( λ)-learning
emonstrates faster convergence compared to the standard Q-

earning. The authors demonstrated the ability of learning agent to

cclimate to the varying wireless channel to learn and adapt the

ate control policy best suited for the channel conditions. 

The authors of [107] attempt to solve the link adaptation prob-

em of single carrier frequency domain equalization (SC-FDE) sys-

ems. SC-FDE systems use cyclically prefixed M-QAM to allow fre-

uency domain equalization at the receiver. The authors approach

he problem from a classification perspective such that the opti-

um modulation and coding scheme that would deliver the high-

st goodput for the current channel conditions would correspond

o the best classification of the multidimensional data. The fea-

ure vectors considered include estimated post-processing signal-

o-noise-ratio (SNR), estimated channel coefficients, and noise vari-

nce. PCA is used for dimensionality reduction such that an or-

hogonal transformation maps the features from a higher dimen-

ional space to lower dimension. The kNN algorithm is used

o classify the reduced dimensional feature vectors. A signifi-

ant drawback of using kNN algorithm is that it requires stor-

ng the previously observed values which is memory intensive

nd computationally expensive. For a low power wireless device,

uch an algorithm is a poor choice for real-time operations [108] .

ackle this problem to perform real-time link adaptation of MIMO-

rthogonal frequency-division multiplexing (OFDM) systems by us-

ng online kernelized support vector regression (SVR). SVR at-

empts to minimize the generalization error bound to achieve gen-

ralized performance rather than minimizing training error like

VM. SVR requires minimal memory and computational power and

as demonstrated to adapt quickly to varying channel conditions

n their simulations. For every packet, the receiver observes the

acket failure/success, channel measurements and the modulation

nd coding scheme corresponding to that packet. To prevent mem-

ry explosion, the authors use a sparsification algorithm [112] such

hat only linearly independent samples are preserved in the dictio-

ary. The SVR algorithm finds the linear regression function that

orresponds to the minimum mean squared loss function. The au-

hors compared the performance of online kNN versus online SVR

o demonstrate the monotonically increasing memory and time

onsumption with online kNN while it remained constant for on-

ine SVR. 

A RL based solution is proposed in [109] to achieve adaptive

ate and power control for point-to-point communication and ex-

end it to a multi-node scenario. The receiver is assumed to feed-

ack channel gain and packet success/fail status (acknowlegement

ACK)/negative acknowledgement (NACK)) to the transmitter al-

owing it to choose the modulation and transmitter power based

n the obtained information. Accordingly, the authors formulate

he objective to maximize the throughput per total consumed en-

rgy considering the channel conditions, queue backlog, modula-

ion and transmit power. The authors incorporate buffer process-

ng cost/energy into the total energy consumption cost such that

here is a cost incurred for buffer overflows. Imposing buffer pro-

essing cost can be viewed as a quality of service (QoS) factor.

he formulated MDP is solved using the Actor–Critic AC algorithm

49] which involves two parts: actor and critic. The actor decides

he action and the critic estimates the state-value function and the

rror which criticizes the actor’s action. The actor selects the ac-

ion based on Gibbs softmax method [49] such that the action cor-

esponding to the highest conditional probability of state-action is

hosen. The authors demonstrated the throughput achieved with

ctor–Critic AC algorithm is twice that of a simple policy where

he highest modulation order that maintains a predefined link SNR

s chosen. 

Another notable application of ML in improving real-time video

treaming is presented in [113] . The authors propose Video Qual-

ty Aware Rate Control (QARC), a DL based adaptive rate control
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scheme to achieve high video quality and low latency. The complex

challenge posed by the varying video quality and dynamic channel

conditions is solved by two RL based models; a video quality pre-

diction network (VQPN) and a video quality reinforcement learn-

ing (VQRL). The VQPN predicts future video quality based on pre-

vious video frames whereas the VQRL algorithm adopts the asyn-

chronous advantage actor critic (A3C) RL [114] method to train the

neural network. VQRL accepts historic network status and video

quality predictions from VQPN as inputs. 

The authors use a neural network in this video streaming ap-

plication motivated by the effectiveness of the neural network in

the prediction of time sequence data. The VQPN model adopts CNN

layers to perform feature extraction of the input video frames to

obtain spatial information. The CNN layers are followed by a two

layered RNN which extracts temporal characteristics of the video

frames in the past k sequences. The output of the VQPN is the pre-

diction of video quality for the next time slot. The weights are up-

dated based on the mean squared error loss function between the

actual video quality score and the estimated video quality score.

Specifically, the VQPN has 5 layers to perform feature extraction;

a convolution layer with 64 filters each of size 5 with stride 1, a

3 × 3 average pooling layer, a second convolution layer with 64 fil-

ters of size 3 with stride 1, a 2 × 2 max-pooling layer and a hidden

layer with 64 neurons. The output of the feature maps represents

time series data which is fed into the RNN. The RNN comprises a

GRU layer with 64 hidden units which then connects to another

GRU layer of 64 hidden units. The hidden layer connects to the

hidden output of the last GRU layer resulting in a 5-dimensional

vector output corresponding to the video quality scores for the bit

rates [30 0, 50 0, 80 0, 110 0, 140 0] kbps. The authors use Adam gra-

dient optimizer to train the VQPN with a learning rate of 10 −4 . The

VQPN was realized using the open source ML library, TensorFlow

[115] . 

In modeling the VQRL, the neural network must be trained

to learn the relationship between the video quality and bit rate.

The sender serves as a learning agent who observes the future

video quality and previous network status in the state space. The

network status in the state space is comprised of sender’s video

transmission bit rate, received bit rate of past k sequences, delay

gradient, and packet loss ratio of previous k sequences. The ac-

tion taken refers to the video bit rate selected for the next time

slot. Since in this case the states will be represented by contin-

uous numbers which leads to a fairly large state space, it is un-

able to store them in a tabular form. As Q-learning cannot be

effective in solving large state space problems, the authors have

combined RL with a neural network. The authors solve this RL

problem using A3C RL algorithm [114] whereby the policy train-

ing is achieved by means of a policy gradient algorithm. The au-

thors further propose a multiple-training agent version to acceler-

ate the training process. The multiple agents comprise of a central

agent and several forward propagation agents. The forward prop-

agation agent only decides with policy and critic via state inputs

and neural network model received by the central agent for each

step. The central agent uses the actor–critic algorithm to com-

pute gradients and then updates its neural network model which

is then pushed to the forward propagation agent. This can happen

asynchronously among all agents with no thread locking between

agents. The VQPN is trained and tested on two video datasets;

VideoSet (a large scale compressed video quality dataset) and self-

collected video sets (live concerts, music videos, short movies). To

train VQRL, the authors use packet-level, chunk-level, and synthetic

network traces. The quality of experience (QoE) metric is defined

as a weighted function of video quality, sender’s bit rate and delay

gradient measured by the receiver at a time instant n . The QARC

algorithm was tested for its efficacy in real-world operating condi-

tions by video-streaming on three different networks (public WiFi,
erizon cellular network and a wide area network between Shang-

ai and Boston) at a local coffee shop. The client was running on

 MacBook Pro laptop connected to a server running on a Desktop

achine located in Boston. The authors demonstrated the QARC al-

orithm outperform Skype and WebRTC in terms of the QoE met-

ic. 

Future IoT systems will involve a variety of traffic types ranging

rom bursty small packets, emergency low-latency transmissions,

nd high-rate multimedia traffic. Adaptive rate control strategies

hich intelligently respond to link quality, as well as traffic type,

ill be imperative for such systems. 

.2.2. Adaptive channel equalization 

Another key area where ML algorithms, and more specifically

eural network models, have been successfully employed to en-

ance the physical layer is adaptive channel equalization [116–

25] . IoT networks are usually dense comprising of several de-

ices attempting to communicate simultaneously. Such dense de-

loyment with multiple transmissions results in a harsh communi-

ation environment. Channel equalization techniques must be em-

loyed at the receiver for efficient signal demodulation [124] . em-

loys multi-layer perceptrons (MLPs) to perform non-linear chan-

el equalization of a 16-QAM system. The use of non-linear power

mplifiers result in non-linear amplitude and phase distortion re-

ulting in a non-linear channel model as expressed by the follow-

ng relation, 

 (t) = A (a (t )) e j[ φ(t)+ P(a (t)) ] + g(t) , (78)

uch that A (x ) = 

αa x 
1+ βa x 2 

and P(x ) = 

αφx 

1+ βφx 2 
are the non-linear am-

litude and phase distortions and g ( t ) is the additive white Gaus-

ian noise (AWGN). 
The goal of non-linear channel equalization is to estimate the

ransmitted symbol from the received distorted symbols. The MLP
s trained following a minimum error entropy criterion [126] . The
daptive system training aims to minimize/maximize the informa-
ion potential based on the Renyi’s entropy order. Fig. 8 shows an
daptive system learning to update its weights such that the dif-
erence ( e i ) between the output ( y i ) and desired response ( d i ) is

inimized. The weights ( w ) are trained based on the gradient of
he information potential ( I ρ ) as 

∂ I ρ

∂w 

= 

ρ − 1 

N 

ρ

∑ 

j 

⎛ ⎝ 

[ ∑ 

i 

G σ (e j − e i ) 

] ρ−2 ∑ 

i 

G 

′ 
σ (e j − e i ) 

∂y i 
∂w 

∂y j 

∂w 

⎞ ⎠ , (79)

here G σ (. ) denotes the Gaussian kernel with standard deviation

. The gradients of the outputs with respect to the weights can be

omputed using the standard BP algorithm. The proposed adaptive

qualizer is composed of two MLPs operating in parallel, say MLP1

nd MLP2. MLP1 is trained to learn the mapping of the transmit-

ed signal amplitude a i , i = 1 , 2 , . . . , N to the received signal am-

litude | r i | . Since for a 16-QAM, the transmitted signal amplitude

an only have three different am plitude levels, the output of the

LP1 corresponding to the transmitted signal amplitude is com-

ared to the measured | r i | . The output that gives the closest es-

imate to the possible values is chosen as the estimate for trans-

itted signal amplitude. The MLP2 is trained to learn the mapping

rom received signal amplitude to the non-linear phase distortion.

rom the estimated amplitude and phase from MLP1 and MLP2,

he in-phase and quadrature components of the transmitted sym-

ol are determined. In this work, authors train the system for an

ntropy order ( ρ = 3 ), steepest ascent for information potential, a

aussian kernel with σ = 1 and a dynamic step size. The train-

ng initially starts with unitary step size which then updates de-

ending on the weight update such that the value increases when

he update yields better performance and vice-versa. The authors
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Fig. 8. Adaptive system. 
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emonstrated in simulations that the information potential max-

mization approach converges in fewer iterations than the mean

quared error technique. 

The authors of [125] explore the capabilities of DL for joint

hannel equalization and decoding. The DL model comprises of an

ncreased number of hidden layers to improve the representation

apability of the neural network. Similar to the [124] , the chan-

el is assumed to introduce non-linear distortion to the transmit-

ed symbols. The authors train the network to minimize the mean

quared error loss ( L = 

1 
N 

∑ 

i ( r i − m i ) 
2 ) between the transmitted

ymbol ( m i ) and received symbol ( r i ) as presented to the network

n the training phase. The neuron weights in each layer can be up-

ated using any gradient descent algorithms such as to minimize

he loss function. The activation functions could be ReLU or sig-

oid functions. The authors demonstrated the performance of the

roposed DL for joint channel equalization and decoding with a

ix layer neural network comprising of 16, 256, 128, 64, 32 and 8

eurons in each layer. The modulation used is binary phase shift

eying (BPSK) for a (16,8) polar code and ReLU activation function. 

In [127] , three DL models for channel decoding are proposed.

n this book, we will cite the CNN model for the channel de-

oder. The CNN employs a convolution operation which signifi-

antly reduces the number of parameters allowing the network

o be deeper with fewer parameters. The hidden layers use either

onvolution or pooling. The input to the CNN is batch-normalized

128] such that any layer that previously received input x will re-

eive BatchNorm ( x ) which is a normalized, scaled and shifted ver-

ion of original input with respect to a mini-batch. 

atchNorm (x ) = θ1 ̂  x + θ2 , (80)

here ˆ x = 

x −μχ√ 

v ar χ + ε is the normalized x over the mini-batch χ with

ean ( μχ ) and variance ( var χ ), θ1 and θ2 are the parameters to

e learned. 

The batch-normalized CNN is trained with mini-batch SGD to

inimize the mean-squared error loss function. The authors ob-

erved the CNN decoder offered better performance compared to a

LP but at the cost of increased computational time. 

The applicability of DL in channel estimation and signal detec-

ion in OFDM systems is demonstrated in [123] . The DL model is

rained offline with simulated data to learn the channel distortions

nd reconstruct the transmitted symbols. Let m ( n ) be the baseband

FDM modulated symbols transmitted over an N -path multipath

hannel { h (n ) } N−1 
n =0 

with AWGN g ( n ) as shown by, 

 ( n ) = m ( n ) h ( n ) + g ( n ) . (81)

fter removing cyclic prefix and converting back to frequency do-

ain the signal representation translates to, 

 ( k ) = M ( k ) H ( k ) + G ( k ) . (82)

he pilot symbols are transmitted in the first OFDM block followed

y user data in the subsequent blocks. The received pilot block and

ne data block are fed as input to the DL model. During the offline

raining stage, the model is trained with various received OFDM
ymbols generated with varying channel conditions under certain

tatistical profiles. The trained model when deployed for online

ignal detection, would estimate the signals without explicit chan-

el estimation. The received signal and original transmitted sym-

ols are supplied to the model to train it such that the difference

etween the model output and the original transmitted data are

inimized. The model consists of five layers, three of which are

idden. Each layer comprises 256, 500, 250, 120 and 16 neurons

espectively. The ReLU function is used as the activation function

n all layers to map the input to the outputs of each layer except

he last layer where sigmoid function is used to map to the interval

0,1]. 

A DL based method to improve the belief propagation (BEP)

lgorithm for decoding linear codes is proposed in [129] . BEP

lso known as Sum-Product algorithm is a message passing algo-

ithm to derive statistical inferences from graphical models such as

ayesian networks. BEP is a form of Maximum A Posteriori (MAP)

ecoding of linear codes. BEP was first used in information theory

y Gallager’s iterative decoder for LDPC [130] which was a general-

zed case of belief propagation. Tanner graph forms a Bayesian net-

ork on which BEP operates. The DL model is trained with a single

odeword. Conventional BEP decoder is constructed from the Tan-

er graph which is a graphical representation of the parity check

atrix that describes the code [131] . The messages are transmit-

ed over edges such that each edge calculates the outgoing mes-

age based on messages received over all its edges except for the

ransmitting edge. 

To enable DL for a BEP decoder, the authors propose an alterna-

ive trellis representation where nodes in the hidden layer repre-

ent edges in the Tanner graph. If N denote the code block length,

he number of neurons in the input layer is a vector of size N .

he subsequent layers except for the final output layer i.e., the hid-

en layers have size E implying the number of edges in the Tan-

er graph. Each neuron in the hidden element corresponds to the

essage transmitted over some edge in the Tanner graph. The out-

ut layer has a size N that outputs the final decoded codeword. Let

 = (v , c) denote the neuron in the hidden layer i, i ∈ 1 , 2 , . . . , 2 L , l v 
s the log-likelihood ratio of the variable node v and y i,e represent

he output message from the neuron after � i −1 
2 � iterations. To al-

ow the DL model, to learn based on the inputs, they are assigned

eights which will be updated using the SGD method. The output

f a neuron in the hidden layer, for an odd i is expressed as, 

 i,e =(v ,c) = tanh 

( 

1 

2 

( 

w i, v l v + 

∑ 

e ′ =(v ,c ′ ) ,c ′ � = c 
w i,e,e ′ y i −1 ,e ′ 

) ) 

(83) 

nd for an even i , 

 i,e =(v ,c) = 2 tanh 

−1 

( ∏ 

e ′ =(v ′ ,c) , v ′ � = v 
y i −1 ,e ′ 

) 

(84) 
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and the final v th output of the network is expressed as 

z v = σ

[ 

w 2 L +1 , v l v + 

∑ 

e ′ =(v ,c ′ ) 
w 2 L +1 , v ,e ′ y 2 L,e ′ , 

] 

(85)

where σ (x ) = (1 + e −x ) −1 is the sigmoid function to map the final

output codeword in the range [0,1]. The goal is to train the weights

{ w i, v , w i,e,e ′ , w i, v ,e ′ } to achieve an N−dimensional output codeword.

The computationally constrained IoT systems desire low com-

plexity channel equalization approaches. The trained neural net-

works will be able to perform channel equalization without requir-

ing channel estimation, hence rendering them suitable for the IoT

systems. 

3.2.3. Adaptive array processing 

MIMO systems are a trending physical layer solution to meet

the increasing demand for high-speed, high-multiuser capacity

communication systems. MIMO systems, due to their antenna ar-

rays, can exploit spatial and temporal diversity to increase the

communication data rate and spectral efficiency. Systems with

adaptive antenna arrays can perform smart signal processing to

combine the signals received at each array and nullify the inter-

ference and/or transmit the signals to steer the beam in an in-

tended direction. Multi-user MIMO [132] is already adopted in the

developed and evolving communication standards like 3rd Genera-

tion Partnership Project (3GPP) long term evolution (LTE), and long

term evolution-advanced (LTE-A). Another emerging MIMO tech-

nology, Massive MIMO, is the physical layer technology of choice

for the latest 5G technology [133] . Massive-MIMO can revolution-

ize the 5G communication by providing reliable faster communica-

tion to more number of users simultaneously. Emerging 5G wire-

less networks promise ubiquitous connectivity, high data rates, en-

ergy efficiency, and spectrum availability. The dense, diverse and

heterogenous nature of IoT networks can be fulfilled by the disrup-

tive 5G technologies such as massive MIMO, non-orthogonal multi-

ple access (NOMA), M2M, etc. Beamforming is a prominent MIMO

solution to enable communication to the desired device allowing

to coexist with the other devices in the dense network. An essen-

tial step that enables beamforming is direction of arrival (DoA) es-

timation that allows the transmitter/receiver to learn the direction

to/from which the signal should be directed/arrived. In this sec-

tion, we will discuss a few prominent adaptive array techniques

and how ML solutions can improvise them. 

Several works [134–139] address the problem of DoA estimation

in array signal processing using artificial neural networks (ANNs).

Let us look at each of these solutions. In [135] , authors propose the

use of a three-layer RBFNN that can learn multiple source-direction

findings of a six-element linear antenna array. The RBFNN does not

require training with all possible combinations of training sets. The

network will generalize when trained with an expected range of

input data. In this case, authors trained the network with input

data whose DoA is uniformly distributed in the range −90 ◦ to 90 ◦.

The performance is compared to the conventional multiple signal

classification (MUSIC) algorithm for DoA estimation of correlated

and uncorrelated signals. The linear antenna array performs the

mapping from the angle space to the sensor output space such that

o i = 

K ∑ 

k =1 

a k e 
j2 π f 0 d sin θk + αk , (86)

where i = 1 , 2 , . . . , M and k denote the respective antenna element

and incident signal respectively, f 0 is the frequency of incident sig-

nal, d is the inter-element spacing, θ k is the angle of arrival of

k th signal and φk is the initial phase of k th incident signal. The

RBFNN is trained with N patterns to perform reverse mapping of
eceived array data ( o i ) to the angle space ( θ k ). The incident ar-

ay vectors are preprocessed prior to feeding them to the RBFNN.

o train the neural network, the antenna array output vectors are

enerated ( o (n ) , n = 1 , 2 , . . . , N). Each of the array output vector is

urther transformed to the spatial correlation matrix R ( n ). Since

he diagonal elements of the correlation matrix does not carry any

ngle information, i.e. R mm 

′ = 

∑ K 
k =1 a k , only the cross-correlation

erms are considered. These cross-correlated terms are arranged

nto an input vector v ( n ). The output node subsequently computes

he weighted sum of the hidden layer outputs. 

 k ( j) = 

N ∑ 

i =1 

w i (k ) G 

(‖ o ( j) − o (i ) ‖ 

2 
)
, 

k = 1 , 2 , . . . , K, j = 1 , 2 , . . . , N, (87)

here w i ( k ) represents the i th weight of the network for the k th

ncident signal and G (. ) is the Gaussian function performed by the

idden layer. Now, the equation (87) changes to 

 k ( j) = 

N ∑ 

i =1 

w i (k ) e −‖ o ( j) −o (i ) ‖ 2 /σ 2 
g , (88)

here σ g controls the influence of each basis function. The above

quation can be rewritten in matrix form as, 

= WF . (89)

ere, � and W are the K × L angle and weight matrices and F is

he L × N hidden layer matrix. L is chosen to be less than N to pre-

ent ill-conditioning arising from large matrix. The input vectors

 ( n ) are normalized according to Eq. (89) . Using least-squares (LS)

pproach, the weights can be obtained as 

ˆ 
 = �F † , (90)

here F † is the pseudo-inverse given by 

 

† = F T (FF T ) −1 . (91)

ow, the DoA estimate can be obtained as 

ˆ = 

ˆ W F = �T (FF T ) −1 F . (92)

he RBFNN is trained with the Normalized cumulative delta rule

140] such that the weight changes are accumulated over sev-

ral training presentations as specified by the Epoch. The trained

BFNN will give the DoA estimates when presented with the nor-

alized input vector. The authors demonstrated the computational

dvantage gained by adopting the RBFNN based DoA estimator as

pposed to the conventional MUSIC algorithm. The estimation ac-

uracy of the proposed DoA estimator in addition to the compu-

ational efficiency are the key merits of the proposed solution and

resents itself as a computationally efficient alternative. 

In a recent work [134] , the DoA estimation is performed us-

ng a ANN with three layers; input, hidden and output layers. The

uthors study the estimation accuracy in terms of the number of

eurons in the hidden layer. Unlike the RBF approach adopted by

uthors of [135] , here the input activation function is the hyperbolic

angent sigmoid transfer function and the output activation function

s the logarithmic sigmoid . 

In yet another work [141] , the authors employ RBFNN to per-

orm adaptive beamforming. Adaptive beamforming is a method of

pdating weights of an adaptive antenna array such that the an-

enna radiation pattern will form beams such that strong beam is

ent towards intended user’s direction and nulls to sources of in-

erference. The authors adopt a two-step approach to tackle this

roblem. First, the DoA of desired users are determined as in

135] and secondly, the beamformer weights are estimated to di-

ect the beams. Similar to the DoA estimation problem, the authors
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Table 3 

Summary of applications of ML in physical layer. 

Physical layer solution ML algorithm Objective 

V. T. Nguyen et al. [71] . DCNN Cognitive communication architecture 

Li et al. [90] . XGBoost End-to-end dynamic spectrum management 

T. Tholeti et al. [72] . Non-parametric Bayesian learning CR architecture for spectrum assignment 

Li et al. [111] . RL Adaptive rate control 

Puljiz et al. [107] . kNN Adaptive rate control 

Yun and Caramanis [108] SVR Adaptive rate control 

Li [142] RL Adaptive rate and power control 

Huang et al. [113] . RL wt CNN and RNN Adaptive rate control 

Erdogmus et al. [124] . MLP Non-linear channel equalization 

Ye and Li [125] DNN Non-linear channel equalization 

Lyu et al. [127] . CNN Channel decoder 

Ye et al. [123] . DNN Channel equalization in OFDM systems 

Nachmani et al. [129] . DNN Improve BEP algorithm for decoding linear codes 

Zooghby et al. [135] . RBFNN DoA estimation 

Nleren and Yaldiz [134] ANN DoA estimation 

Zooghby et al. [141] . RBFNN Adaptive beamforming 
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pproach this using RBFNN. For K incident signals, let the signal re-

eived at an M element linear antenna array at p th time instant be

 (p) = 

K ∑ 

k =1 

b k s k (p) + g (p) = Bs (p) + g (p) (93)

uch that, B = [ b 1 , b 2 , . . . , b M 

] T is the array steering matrix that

olds the spatial signal of the k th source, s = [ s 1 , s 2 , . . . , s K ] is the

ignal vector and g ( p ) is the noise vector. Here, 

 m 

= [1 , e − j2 πd sin θk /λ, . . . , e − j2 π(M−1) d sin θk /λ] . (94)

BFNN is trained to compute the minimum variance distortionless

esponse (MVDR) beamformer weights such that 

ˆ 
 MV DR = 

R 

−1 b m 

b 

H 
m 

R 

−1 b m 

, (95) 

here R = 

1 
P 

∑ 

p o (p) o 

H (p) is the sample averaged covariance ma-

rix computed from P snapshots of the received signal vector.

he beamformer output can be denoted as y (p) = 

ˆ w 

H 
MV DR 

o (p) . The

eamformer vector estimation can be extended to any adaptive an-

enna array, the model considered in this example is a linear array

or notational simplicity. The input and output layer of the RBFNN

onsists of 2 M nodes to accommodate the in-phase and quadrature

omponents of the input vector o ( p ) and the hidden layer’ out-

uts. Much alike the DoA estimation problem in [135] , the RBFNN

s trained to perform an input-output mapping from the received

ector space to the beamformer weight space. The weights from

he input to the hidden layer are identified using unsupervised k -

eans clustering and those from hidden to output layer follows

he supervised delta learning rule. During the training phase, the

BFNN is trained with N t training array output vectors x n ( p ) and

heir corresponding ˆ w 

n 
MV DR 

∀ n ∈ 1 , 2 , . . . , N t . The array output vec-

or is normalized prior to computing the corresponding covariance

atrices R n . The beamformer weights ˆ w 

n 
MV DR 

are then computed

ccording to Eq. (95) . The trained RBFNN can be used to estimate

he optimum MVDR beamformer weights for a presented normal-

zed array output vector in a computationally inexpensive manner.

In this section, we explored the various ML techniques perti-

ent to the physical layer that is currently proposed to enhance

he IoT framework. The integration of such ML solutions with the

oT devices would be a prominent step in developing cognitive IoT

rchitectures that can learn, adapt and behave under the varying

ystem and environmental dynamics. Table 3 enlists the various ML

lgorithms and their corresponding physical layer objective. 
.3. Open problems and challenges 

We have discussed the capabilities introduced by integrating

ognition into an IoT framework. The CR-IoT framework is truly an

nvaluable component to keep up with the rising IoT device den-

ity and its tailored comeuppances. While CR holds the key in re-

lizing the full potential of future IoT architectures, several open

hallenges exist that readers can derive motivation from for future

esearch. 

.3.1. Optimizing distributed spectrum utilization 

Though a few spectrum utilization techniques have been in-

roduced for CR IoT frameworks, they involve cognition in the

loud/fog or in the gateway. Such centralized spectrum assignment

ecision-making introduces additional latency to the IoT commu-

ications. Further, the scalability of such techniques would be

peculative and intractable in terms of latency and the computa-

ional and data management load on the centralized access point

cloud/fog/gateway). A lightweight distributed spectrum decision

aking would be desired for the IoT frameworks whereby each IoT

evice uses its own cognitive ability to access the spectrum based

n its historical and current spectrum sensing data. 

Another viable approach would be to perform opportunistic

pectrum access decisions based on the geographical location of

he spectrum sensing history. Such that even when the IoT de-

ice (SU) senses a PU/SU traffic it can identify the radio frequency

dentification tags and map them to their location. Accordingly,

 geolocation-based spectrum occupancy history can be built to

redict the traffic and perform efficient transmit power control

cheme to use the channel without interfering with the ongoing

raffic. The success of such transmissions can be recorded over

ime to learn the collision and transmit power level records. An ef-

cient ML technique can be used to perform online learning of the

pectrum records to optimize the transmit power level to carry out

nterference-free spectrum sharing. 

.3.2. Mobility support 

Exploring efficient communication strategies for mobile IoT ap-

lications such as moving vehicles in the connected vehicular net-

ork, drones in an unmanned aerial vehicle (UAV) network, mo-

ile smartphone users, among others pose unforeseen challenges

o the capacity, spectrum handoffs, cloud connectivity, scalability,

tc. Adaptive physical layer technique such as adaptive intelligent

eamforming in conjunction with opportunistic spectrum access

n the mobile scenario for reliable energy-efficient communication

s another area to be explored. Specifically, ML can be exploited
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Table 4 

Summary of ML solutions for automatic modulation classification. 

Classifiers Model Representation Objective 

Jagannath et al. [160] . DNN Feature-Based 7-Class task considering PSKs, FSKs, QAMs 

Kulin et al. [147] . DCNN I/Q, A/ �, FFT 11-Class task considering PSKs, FSK, QAMs, PAM, DSB, SSB 

O’Shea and Corgan [158] DCNN I/Q 11-Class task considering PSKs, FSK, QAMs, PAM, DSB, SSB 

Shengliang Peng and Yao [159] DCNN Constellation 4-Class task considering PSKs and QAMs 

West and O’Shea [146] DCNN, LSTM, RN I/Q 11-Class task considering PSKs, FSK, QAMs, PAM, DSB, SSB 

Karra et al. [148] . DCNN, DNN I/Q, FFT 11-Class task considering PSKs, FSK, QAMs, PAM, DSB, SSB 
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to learn the user mobility pattern and data traffic model to as-

sign radio resources such as transmission rate, power and the fre-

quency band based on link reliability, spectrum congestion, spec-

trum availability, among others. 

4. Machine learning for signal intelligence 

As IoT devices become more pervasive throughout society the

available operational radio frequency (RF) environment will con-

tain more non-cooperative signals than ever seen before. Subse-

quently, the ability to garner information about signals within a

spectrum of interest will become ever more important and com-

plex, motivating the use of ML for signal intelligence in the IoT.

ML techniques for signal intelligence typically manifest themselves

as solutions to discriminative tasks, and many applications specif-

ically focus on multi-class or binary classification tasks. Problems

of these types arise in the context of IoT in many ways including

automatic modulation classification (AMC) tasks, wireless interfer-

ence classification tasks, and signal detection tasks, each of which,

is relevant to signal intelligence for the IoT in their own way. 

AMC is the task of determining what scheme was used to mod-

ulate the transmitted signal, given the raw signal observed at the

receiver. Knowledge of the modulation format used by the trans-

mitter is essential for proper demodulation of the received signal

at the receiver, thus solutions to AMC tasks are paramount in sce-

narios where the operational environment may distort the trans-

mitted signal. Such is the case in the IoT, where multipath fad-

ing channels are regular in device to device communication. AMC

may also find application in next-generation intelligent, adaptive

transceiver technology in which the radios rapidly switch between

modulations based on the channel conditions without requiring a

dedicated feedback channel. 

Solutions to wireless interference classification tasks aim pri-

marily to associate a given received signal with an emitter from a

known list of emitters. Typical implementations consider emitters

that use common communication standards including WiFi, Zig-

bee, and Bluetooth. Other such solutions consider additional sig-

nals that are present in the environment, such as those emanating

from a household microwave oven appliance, as they may play an

interfering role in some operational environments. Wireless inter-

ference classification in this nature is particularly important in the

IoT, as IoT devices are often deployed in the homes of users and

around other devices that emit RF signals. Classification of a sig-

nals emitter can provide insight into the behavior of its use and

subsequently its effect on the operability of the local IoT devices. 

Problems of signal detection arise in many different areas of

communications and the resulting applications of signal detection

very widely. In the simplest case, signal detection can be formu-

lated as a binary classification problem with an output correspond-

ing to whether or not a signal is present in the locally sensed RF

environment. While interesting solutions exist for the aforemen-

tioned problem formulation, within the IoT more complex detec-

tion problems often arise in the context of security. Interesting sig-

nal detection algorithms can thus be extended to classify the pres-
nce of an intruder provided characteristics of their transmission

n the environment. Problems of these types are discussed later in

ection 4.3 . 

.1. Modulation classification 

DL solutions to modulation classification tasks have received

ignificant attention in recent years [143–148] . Several DL mod-

ls are presented in [143] to address the modulation recognition

roblem. Hierarchical DNNs used to identify data type, modula-

ion class, and modulation order are discussed in detail in [148] . A

onceptual framework for end-to-end wireless DL is presented in

147] , followed by a comprehensive overview of the methodology

or collecting spectrum data, designing wireless signal representa-

ions, forming training data and training deep neural networks for

ireless signal classification tasks. 

The task of AMC is pertinent in signal intelligence applications

s the modulation scheme of the received signal can provide in-

ight into what type of communication frameworks and emitters

re present in the local RF environment. The problem at large can

e formulated as estimating the conditional distribution, p ( y | x ),

here y represents the modulation structure of the signal and x

s the received signal. 

Traditionally, AMC techniques are broadly classified as max-

mum likelihood-based approaches [149–153] , feature-based ap-

roaches [154–156] and hybrid techniques [157] . Prior to the intro-

uction of ML, AMC tasks were often solved using complex hand

ngineered features computed from the raw signal. While these

eatures alone can provide insight about the modulation structure

f the received signal, ML algorithms can often provide a better

eneralization to new unseen data sets, making their employment

referable over solely feature-based approaches. The logical rem-

dy to the use of complex hand engineered feature-based clas-

ifiers are models that aim to learn directly from received signal

ata. Recent work [158] show that DCNNs trained directly on com-

lex time domain signal data outperform traditional models us-

ng cyclic moment feature-based classifiers. In [159] , the authors

ropose a DCNN model trained on the two-dimensional constel-

ation plots generated from the received signal data and show

hat their approach outperforms other approaches using cumulant-

ased classifiers and SVMs. 

While strictly feature-based approaches may become anti-

uated with the advent of the application of ML to signal

ntelligence, expert feature analysis can provide useful input to ML

lgorithms. In [160] , we compute hand engineered features directly

rom the raw received signal and apply a feedforward neural net-

ork classifier to the features to provide a AMC. The discrete time

omplex-valued received signal can be represented as, 

 (n ) = h (n ) x (n ) + w (n ) , n = 1 , . . . , N (96)

here x ( n ) is the discrete-time transmitted signal, h ( n ) is the com-

lex valued channel gain that follows a Gaussian distribution and

 ( n ) is the additive complex zero-mean white Gaussian noise pro-

ess at the receiver with two-sided power spectral density (PSD)
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 0 /2. The received signal is passed through an Automatic Gain

ontrol prior to the computation of feature values. 

The first feature value computed from the received signal is the

ariance of the amplitude of the signal and is given by, 

 ar(| y (n ) | ) = 

∑ 

N s 
(| y (n ) | − E (| y (n ) | )) 2 

N s 
(97)

here | y ( n )| is the absolute value of the over-sampled signal and

 (| y (n ) | ) represents the mean computed from N s samples. This

eature provides information which helps distinguish frequency

hift keying (FSK) modulations from the phase shift keying (PSK)

nd quadrature amplitude modulation (QAM) modulation struc-

ures also considered in the classification task. The second and

hird features considered are the mean and variance of the max-

mum value of the power spectral density of the normalized

entered-instantaneous amplitude, which is given as, 

max = 

max | F F T (a cn (n )) | 2 
N s 

, (98) 

here a cn (n ) � 

a (n ) 
m a 

− 1 , m a = 

1 
N s 

∑ N s 
n =1 

a (n ) , and a ( n ) is the abso-

ute value of the complex-valued received signal. This feature pro-

ides a measure of the deviation of the PSD from its average value.

he mean and variance of this feature computed over subsets of a

iven training example are used as two separate entries in the fea-

ure vector input into the classification algorithm, corresponding to

he second and third features, respectively. 

The fourth feature used in our work was computed using higher

rder statistics of the received signal, namely, cumulants, which

re known to be invariant to the various distortions commonly

een in random signals and are computed as follows, 

 lk = 

No. of partitions in l ∑ 

p 

(−1) p−1 (p − 1)! 

p ∏ 

j=1 

E { y l j −k j y ∗k j } , (99)

here l denotes the order and k denotes the number of conjuga-

ions involved in the computation of the statistic. We use the ratio,

 40 / C 42 as the fourth feature which is computed using, 

 42 = E (| y | 4 ) − | E (y 2 ) | 2 − 2 E (| y | 2 ) 2 , (100)

 40 = E (y 4 ) − 3 E (y 2 ) 2 . (101)

The fifth feature used in our work is called the in-band spectral

ariation as it allows discrimination between the FSK modulations

onsidered in the task. We define Var ( f ) as, 

 ar( f ) = V ar 

(
F 

(
y (t) 
))

, (102)

here F(y (t)) = 

{
Y ( f ) − Y ( f − F 0 ) 

}+ f i 
f= − f i 

/F 0 , F 0 is the step size,

 ( f ) = F F T (y (t)) , and [ − f i , + f i ] is the frequency band of interest. 

The final feature used in the classifier is the variance of the de-

iation of the normalized signal from the unit circle, which is de-

oted as Var ( �o ). It is given as, 

o = 

| y (t) | 
E (| y | ) − 1 . (103) 

his feature helps the classifier discriminate between PSK and

AM modulation schemes. 

The modulations considered in the work are the following:

PSK, quadrature phase shift keying (QPSK), 8PSK, 16QAM, con-

inuous phase frequency shift keying (CPFSK), Gaussian frequency

hift keying (GFSK), and Gaussian minimum shift keying (GMSK),

esulting in a seven class classification task using the aforemen-

ioned six features computed from each training example. To gen-

rate the data set, a total of 35,0 0 0 examples were collected: 1,0 0 0

xamples for each modulation at each of the five SNR scenarios
onsidered in the work. Three different feedforward neural net-

ork structures were trained at each SNR scenario using a train-

ng set consisting of 80% of the data collected at the given SNR

nd a test set consisting of the remaining 20%. The three feedfor-

ard nets differed in the number of hidden layers, ranging from

ne to three. Qualitatively, the feedforward network with one hid-

en layer outperformed the other models in all but the least favor-

ble SNR scenario, achieving the highest classification accuracy of

8% in the most favorable SNR scenario. The seemingly paradoxical

ehavior is attributed to the over-fitting of the training data when

sing the higher complexity models, leading to poorer generaliza-

ion in the test set. 

This work has been further extended to evaluate other ML tech-

iques using the same features. Accordingly, we found that training

 random forest classifier for the same AMC task yielded similar

esults to the feedforward network classifier. Additionally, the ran-

om forest classifier was found to outperform the DNN approach

n scenarios when the exact center frequency of the transmitter

as not known, which was assumed to be given in the previous

ork. The random forest classifier was comprised of 20 classifi-

ation and regression trees (CART) constructed using the gini im-

urity function. At each split a subset of the feature vectors with

ardinality equal to 3 was considered. 

An alternative approach to the previously described method is

o learn the modulation of the received signal from different repre-

entations of the raw signal [147] . train DCNNs to learn the modu-

ation of various signals using three separate representations of the

aw received signal. The authors denote the raw complex valued

eceived signal training examples as r k ∈ C N , where k indexes the

rocured training data set and N is the number of complex valued

amples in each training example. We inherit this notation for pre-

entation of their findings. The data set in the work was collected

y sampling a continuous transmission for a period of time and

ubsequently segmenting the received samples into N dimensional

ata vectors. 

The authors train separate DCNNs on three different representa-

ions of the raw received signal and compare their results to eval-

ate which representation provides the best classification accuracy.

he first of the three signal representations are given as a 2 × N di-

ensional in-phase/quadrature (I/Q) matrix containing real-valued

ata vectors carrying the I/Q information of the raw signal, de-

oted x i and x q , respectively. Mathematically, 

 

IQ 
k 

= 

[
x i 

T 

x q 
T 

]
(104) 

here x IQ 
k 

∈ R 

2 ×N . The second representation used is a mapping

rom the complex values of the raw received signal into two real-

alued vectors representing the phase, � and the magnitude, A , 

 

A/ �
k 

= 

[
x A 

T 

x �
T 

]
(105) 

here x A/ �
k 

∈ R 

2 ×N and the phase vector x �
T ∈ R 

N and magnitude

ector x A 
T ∈ R 

N have elements, 

 �n 
= arctan 

(
r q n 
r i n 

)
, x A n = (r 2 q n 

+ r 2 i n 
) 

1 
2 (106)

espectively. The third representation is a frequency domain repre-

entation of the raw time domain complex signal. It is character-

zed by two real-valued data vectors, one containing the real com-

onents of the complex FFT, � ( X k ), and the other containing the

maginary components of the complex FFT, � ( X k ), giving, 

 

F 
k = 

[
� (X k ) 

T 

� (X k ) 
T 

]
(107) 
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Using these three representations of the raw signal, the authors

train three DCNNs with identical structure and compare the accu-

racy of the resultant models to determine which representation al-

lows for learning the best mapping from raw signal to modulation

structure. 

The authors use training examples comprised of N = 128 sam-

ples of the raw signal sampled at 1 MS/s and consider the follow-

ing 11 modulation formats: BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM,

CPFSK, GFSK, 4-pulse-amplitude modulation (PAM), wideband Fre-

quency Modulation (WBFM), amplitude modulation (AM)-double-

sideband modulation (DSB), and AM-single-sideband modulation

(SSB). Thus, the training targets y k ∈ R 

11 are encoded as one-hot

vectors where the index holding a 1 encodes the modulation of

the signal. The authors use a total of 220,0 0 0 training examples

x k ∈ R 

2 ×128 . Additionally, samples were acquired uniformly over

different SNR scenarios ranging from −20 dB to +20 dB . 

The CNN structure used for each signal representation is the

same, and consists of two convolutional layers, a fully connected

layer, and a softmax output layer trained using the negative log-

likelihood loss function. The activation function used in each of

the convolutional layers and the fully connected layer is the ReLU

function. The CNNs were trained using a training set comprised of

67% of the total data set, with the rest of the data set used as test

and validation sets. An Adam optimizer [161] was used to optimize

the training processes for a total of 70 epochs. The metrics used to

evaluate each of the models include the precision, recall, and F1

score of each model. The authors provide a range of values for the

three aforementioned metrics for the CNN models trained on dif-

ferent data representations for three different SNR scenarios: high,

medium, and low, corresponding to 18 dB , 0 dB , and −8 dB, respec-

tively. In the high SNR scenario, the authors report that the pre-

cision, recall, and F1 score of each of the three CNN models falls

in the range of 0.67–0.86. For the medium and low SNR scenarios,

the same metrics are reported in the ranges of 0.59–0.75 and 0.22–

0.36, respectively. The authors attribute the relatively low perfor-

mance to the choice of the time-varying multipath fading channel

model used when generating the data. 

The authors go on to evaluate the classification accuracy of each

of the three models trained using different data representations

under similar SNR conditions. Qualitatively, each of the three CNN

models performs similarly at low SNR, while the CNN trained on

the I/Q representation of data yields a better accuracy at medium

SNR and the CNN trained on the amplitude and phase represen-

tation yields a better accuracy at high SNR. Interestingly, the CNN

trained on the frequency domain representation of the data per-

forms significantly worse than the I / Q and A / φ CNNs at high SNR.

The authors mention that this could potentially be due to the sim-

ilar characteristics exhibited in the frequency domain representa-

tion of the PSK and QAM modulations used in the classification

problem. The primary takeaway from this work is that learning to

classify modulation directly from different representations of the

raw signal can be an effective means of developing a solution to

the AMC task; howeve, the efficacy of the classifier is dependent

on how the raw signal is represented to the learning algorithm. 

The following table provides the summary of the methods for

AMC discussed in this section. 

4.2. Wireless interference classification 

The task of wireless interference classification (WIC) regards

identifying what type of wireless emitters exist in the local RF

environment. The motivation behind such a task is that it can

be immensely helpful to know what type of emitters are present

(WiFi, Zigbee, Bluetooth, etc.) in the environment when attempt-

ing to avoid and coexist with interference from other emitters.

Solutions to WIC tasks are often similar in nature to AMC tech-
iques. For example, [162] employ DCNNs to classify IEEE 802.11

/g, IEEE 802.15.4, and IEEE 802.15.1 emitters using a frequency

omain representation of the captured signal. WIC tasks may also

onsider emitters in the environment that are not used in commu-

ication systems. In [163] , an SVM solution is developed to classify

nterference in wireless sensor networks (WSNs) from IEEE 802.11

ignals and microwave ovens. A recent work [164] shows the use

f DCNNs to classify radar signals using both spectrogram and

mplitude-phase representations of the received signal. In [165] ,

CNN models are proposed to accomplish interference classifica-

ion on two-dimensional time-frequency representations of the re-

eived signal to mitigate the effects of radio interference in cosmo-

ogical data. Additionally, the authors of [166] employ DCNN and

STM models to achieve a similar end. 

In [147] , DCNNs are employed for the purpose of the wireless

nterference classification of three different wireless communica-

ion systems based on the WiFi, Zigbee, and Bluetooth standards.

hey look at five different channels for each of the three standards

nd construct a fifteen class classification task for which they ob-

ain 225,225 training vectors consisting of 128 samples each, col-

ected at 10 MS/s. A flat fading channel with additive white Gaus-

ian noise is assumed for this classification task. 

Three DCNNs were trained and evaluated using the wireless in-

erference classification data set described above. Each of the three

NNs was trained on one of the representations of the data that

ere presented in the previous section, namely, I/Q, A / �, and fre-

uency domain representation. The CNN architectures were also

he same as presented previously in Section 4.1 . 

Each of the three CNNs trained using different data representa-

ions was evaluated in a similar fashion to the evaluation method

escribed in Section 4.1 , namely, using precision, recall, and F1

core under different SNR scenarios. For the wireless interference

lassification task, the precision, recall, and F1 score of each of the

hree CNNs all fell in the interval from 0.98 to 0.99 under the high

NR scenario. For the medium and low SNR scenarios, the analo-

ous intervals were from 0.94–0.99 to 0.81–0.90, respectively. 

Additionally, the authors provide an analysis of classification ac-

uracy for each of the three CNN models at varying SNRs. For the

ask of wireless interference classification, the CNN model trained

n the frequency domain representation of the data outperforms

he other models at all SNRs, especially in lower SNR scenarios.

he authors claim that these findings are due to the fact that the

ireless signals considered have more expressive features in the

requency domain as they have different bandwidth, modulation,

nd spreading characteristics. 

The authors of [167] take a different approach to the wire-

ess interference classification task and primarily compare differ-

nt types of learning models rather than different types of data

epresentation. The models the authors propose include deep feed-

orward networks, deep convolutional networks, support vector

achines using two different kernels, and a multi-stage training

MST) algorithm using two different learning algorithms. The au-

hors consider 12 different transmitters and collect 10 0 0 packets

rom each transmitter for a total of 12,0 0 0 packets which comprise

he entire data set. Each transmitter transmitted the same exact

0 0 0 packets, which were generated using pseudo-random values

njected into the modem. All of the transmitters used a proprietary

FDM protocol with a QPSK modulation scheme and a baseband

ransmitter sample rate of 1.92 MS/s. At the receiver, each packet

s represented by 10,0 0 0 time domain I/Q samples. Each of the

odels was trained on data sets consisting of training examples

ade up of 32, 64, 128, 256, 512, and 1024 samples from each

acket, and their performance is compared across data sets. Given

he complex-valued received signal, 

 = (r 1 , r 2 , . . . ., r N ) (108)



J. Jagannath, N. Polosky and A. Jagannath et al. / Ad Hoc Networks 93 (2019) 101913 29 

Fig. 9. Adaptation of MST MLP used in [167] . 
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 samples were selected by skipping the first N 0 samples of a

acket where | � ( r i )| < τ for some τ > 0 yielding the signal vector

 , 

 = (r N 0 , r N 0 +1 , . . . , r N 0 + N−1 ) (109)

or the DNN, SVM, and MST models each training example was

onstructed by concatenating the real and imaginary parts of the

ignal vector, yielding a vector of dimension 2 N . For the CNN

odel the real and imaginary parts of the signal vector were

tacked to generate 2 × N dimensional training vectors. 

The DNN architecture considered in the work consisted of two

ully connected hidden layers, comprised of 128 ReLU units each

nd an output layer consisting of logistic sigmoid units. The net-

ork was trained using the Adam optimizer [161] and a mini-batch

ize of 32. 

The CNN model used by the authors was composed of two con-

olutional layers using 64 (8 × 2) and 32 (16 × 1) filters, respec-

ively. Each convolutional layer was input into a max-pool layer

ith a pool size of 2 × 2 and 2 × 1, respectively. The output of the

econd max-pool layer was fed into a fully-connected layer consist-

ng of 128 ReLU units. An output layer employing logistic sigmoid

nits was used on top of the fully-connected layer. 

The two SVM architectures analyzed in the work differ only

n the kernel function used. The first architecture employed the

olynomial kernel and the second employed the Pearson VII

niversal Kernel [168] . Both architectures used Platt’s Minimiza-

ion Optimization algorithm to compute the maximum-margin

yperplanes. 

The authors also analyze the performance of MST MLPs trained

sing first order and second order methods. A high-level descrip-

ion of MST MLP is presented here and we refer the interested

eader to [169] for a more rigorous derivation. The MST method to

raining neural networks, as presented in the work, is essentially

 hierarchical way to solve an optimization problem by solving

maller constituent optimization problems. To this end, in what is

alled the first stage, a number of separate MLPs would be trained

n different subsets of the training data set. This can be seen in the

owest layer of the hierarchical representation adapted from [167] ,

nd provided herein Fig. 9 . 

Once the first stage is trained, a second stage is trained by

aking the concatenation of the network outputs from the first

tage as input. Training can continue in this fashion for subse-

uent stages. One of the advantages of training networks in this

ay is that the many smaller MLPs comprising the larger classifier

an be efficiently trained using second-order optimization meth-

ds. Second-order optimization methods such as Newton, Gauss-

ewton, or Levenberg-Marquardt methods are usually intractable

ue to the size of typical networks but can provide better con-

ergence when applicable. The authors train two 3-stage MST sys-
ems, one using the first order method of SGD, and one using

he second-order Accelerated Levenberg–Marquardt method [170] .

ach MST system had the identical structure where stage 1 con-

isted of 60 MLPs with 2 hidden layers and 10 units in each layer.

tage 2 and 3 had the same architecture and were comprised of 30

LPs with each MLP consisting of 2 hidden layers made up of 15

nits each. All hidden units employed the tanh activation function

nd all output layers contained linear units. 

All of the models described above were trained on 10 differ-

nt iterations of the collected data set and their performance was

ompared. Five data sets were constructed using training examples

ade up of 32, 64, 128, 256, and 512 samples and each model was

rained twice, using a training set comprised of 90% and 10% of the

otal data set, for a total of 10 different data sets for each model.

n general, the MST system trained using second-order methods on

0% of the training data performed best across all sizes of training

xamples, yielding a classification accuracy of 100% for each data

et. All of the models performed better when trained using 90%

f the data set as opposed to 10% of the training data set. Gen-

rally, each model performed better when provided with training

xamples that contained more samples, with the exception of the

eep feedforward network model, which the authors attribute to

he fact that longer sequences of samples may contain an increas-

ng number of artifacts which the DNN may not be robust to. A

ummarization of the different models presented in this section is

rovided in Table 5 . 

.3. Open problems 

The solutions to the tasks of wireless interference and modula-

ion classification fixate themselves among solutions readily avail-

ble to be deployed in the IoT. This distinction is primarily a re-

ult of the mutual exclusivity that these tasks exhibit with the IoT

tself; these problems exist both within and outside the context

f the IoT. Contrarily, there are signal intelligence tasks that arise

rom and are innate to the IoT, which have been studied in compar-

tively less detail. These tasks, along with their potential to benefit

rom the application of ML techniques, are described in the rest of

his section. 

.3.1. Intrusion detection 

Security in the IoT is of utmost importance as the prevalence

f connected devices in society and the amount of data collected

rom individuals increases. Detection of an intruder is often the

rst step in mitigating effort s from adversaries and can be per-

ormed in myriad ways across multiple layers of the protocol stack.

s the problem of intruder detection moves from the internet to

he IoT, the detection of the physical presence of the intruder

mong things becomes a salient avenue for mitigation. In [171] ,
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Table 5 

Summary of ML solutions for wireless interference classification. 

Classifiers Model Representation Objective 

Kulin et al. [147] . DCNN I/Q, A/ �, FFT Classification of 15 WiFi, ZigBee, and Bluetooth Transmitters 

Selim et al. [164] . DCNN 2D time-frequency, A/ � Classification of Radar Signals 

Akeret et al. [165] . DCNN 2D time-frequency Classification of Cosmological Interference 

Czech et al. [166] . DCNN, LSTM 2D time-frequency Classification of Cosmological Interference 

Youssef et al. [167] . DNN, DCNN, SVM, MST I/Q Classification of 12 OFDM Transmitters 

Schmidt et al. [162] . DCNN FFT Classification of IEEE 802.11 b/g, IEEE 802.15.4, IEEE 802.15.1 signals 

Grimaldi et al. [163] . SVM Feature Based Classification of IEEE 802.11 and Microwave Oven signals 
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received signal strength indication (RSSI) information is collected

from deployed security probes in an attempt to detect behaviors

and communications that are illegitimate and thus identify devices

that may have been compromised or may have entered the local

network illegally. The authors collect RSSI information, reception

timestamps, and radio activity during a time interval from each of

the probes and route them to a central security system, which pro-

cesses the information using a proposed neural network algorithm,

which classifies the presence of an intruder. The authors note sig-

nificant changes in collected RSSI information in their laboratory

but highlight a full implementation of the proposed solution as fu-

ture work. A primary advantage to RSSI-based intrusion detection

is that the proposed solution is protocol agnostic. 

4.3.2. Indoor localization 

The problem of indoor localization remains a challenging one

in the context of the IoT and elsewhere. Generally, RF localization

problems arise when trying to estimate the geolocation of a receiv-

ing or transmitting radio. In outdoor environments, this is read-

ily accomplished on-board many devices using various geolocating

signals such as GPS and GNSS; however, the efficacy of these sig-

nals use in geolocation is severely diminished without line of sight

(LoS) between the satellites and receivers. Thus, indoor localization

becomes an important problem in many applications involving the

tracking and location of devices that are associated with human

users, as these applications often occur indoors. Examples of ap-

plications that benefit from indoor localization capabilities include

indoor robotic systems, assisted living systems, health applications,

and location-based services. Additionally, in [172] , indoor localiza-

tion of IoT devices is motivated as one of the key enabling tech-

nologies in increasing the utilization of the IoT. 

Most indoor localization approaches in the IoT aim to make use

of information transmitted from the local Wi-Fi access points and

employ some form of Wi-Fi fingerprinting. In [173] , a clustering

based access point selection and RSSI reconstruction algorithm is

proposed to obtain the optimal feature set for input to an ML-

based localization algorithm. Simulation results are provided us-

ing ANN, SVR, and ensemble SVR to obtain localization predic-

tions from the selected RSSI values. In [174] , DNNs are proposed

in conjunction with a linear discriminant analysis to operate on

RSSI and basic service set identifier (BSSID) information to pro-

duce both classification and regression location information. Al-

ternatively, [175] suggest utilizing channel state information con-

sisting of subcarrier-level measurements of OFDM channels as op-

posed to RSSI based fingerprinting and simulation results using

CNNs and LSTMs trained on channel state information are pro-

vided. 

5. Machine learning for higher layers 

The requirement for IoT devices to have distributed intelligence

is becoming inevitable to tackle the problems emanating from the

complexity, dynamic nature of its operations and to ensure scala-
ility. This implies that part of the IoT “smart” devices will require

utonomy to react to a wide range of situations pertaining to net-

orking, spectrum access, among others [176] . This is where the

ole of ad hoc networking becomes a crucial part of IoT. Examples

f ad hoc interaction in the context of IoT can include vehicular ad

oc network (VANET) that involves vehicles communicating with

ach other and roadside infrastructure along with the assistance

f various sensors (velocity, temperature, humidity, CO2 emissions,

tc.). Similarly, the ability to deploy wireless ad hoc sensor net-

orks (WASNs) will also play a crucial role in the overall IoT archi-

ecture [177] that is envisioned to enable smart cities as shown in

ig. 6 . The ad hoc networking aspect of IoT will, therefore, find ap-

lications in areas such as healthcare, infrastructure management,

isaster prevention, and management, and optimizing transporta-

ion systems [178–180] . 

The advancements in the higher layers, especially the data-link

nd the network layers have played a significant role in enabling

oT devices. The necessity to provide fair and efficient spectrum

ccess has been a key motivating factor for researchers to design

AC protocols for IoT [181,182] . In contrast to centralized designs

here entities like base stations control and distribute resources,

odes in ad hoc IoT network have to coordinate resource allocation

n a distributed manner. Similarly, to ensure scalability and reduce

verhead, distributed designs are usually favored while designing

outing algorithms for such networks. Recently, ML has made a

ignificant impact on the design of these layers specifically to en-

ance scheduling and resource allocation, mitigating attacks like

enial of service (DoS) in hostile environments, and efficient rout-

ng among others. In this section, we discuss in detail some of the

dvances made on this front. 

.1. Data link layer 

A key functionality of the data link layer is to negotiate the

ccess to the medium by sharing the limited spectrum resources

n an ad hoc manner. Traditional MAC protocols designed for

ANETs (including IoT networks) include carrier sense multi-

le access/collision avoidance (CSMA/CA) [183,184] , time division

ultiple access (TDMA) [185,186] , code division multiple access

CDMA) [187,188] and hybrid approaches [189–191] . Here, we dis-

uss some of the recent effort s to employ ML to enhance the data

ink layer. 

The broadcast scheduling problem (BSP) is a key problem stud-

ed in a TDMA-based network to find an optimal TDMA schedule

hat provides transmission time slots to of all nodes while mini-

izing the TDMA frame size [192] . Several ML-based approaches

ave been proposed to solve this combinatorial optimization of

SP using variations of neural networks. This includes the work of

193] proposing a combination of HNN and genetic algorithm (GA)

nd [194] using sequential vertex coloring (SVC) and noisy chaotic

eural network (NCNN). Subsequently, these solutions were shown

o be outperformed by fuzzy hopfield neural network (FHNN) pro-

osed in [195] . Here, we describe how [195] tackles BSP. 
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Consider N nodes in a network with N T time slots to share

mong these nodes. The slot assignment matrix SA , in which each

lement is defined as SA i j = 1 , if time slot j is assigned to node

 , otherwise SA i j = 0 . The set of time slots to be assigned is given

y set T = { t 1 , t 2 , . . . , t N T } . The fuzzy state, a degree that time slot

 x is assigned to node i is represented by μxi and matrix of all

he fuzzy states, U is called a fuzzy c-partition matrix. Next, the

hannel utilization of node i is defined as the fraction of total

ime slots assigned to node j from the total TDMA frame given as

j = ( 
∑ N T 

j=1 
SA i j /N T ) . Accordingly, the total channel utilization for

he network can be given as [196] , 

= 

1 

N T N 

N ∑ 

j=1 

N T ∑ 

i =1 

SA i j (110) 

The lower bound for the frame length is given by

ax i ∈ N deg (i ) + 1 where deg (i ) is the number of edges inci-

ent to it. In the case of FHNN, an energy function is considered

s the distance between the current state of the HNN and its

olution state. The objective is to minimize the energy function by

olving the optimization problem. In this case, the energy function

hat considers all the constraints is defined as follows [195] , 

 = 

α

2 

N T ∑ 

x =1 

( 

N ∑ 

i =1 

μxi − 1 

) 2 

+ β
N T ∑ 

x =1 

N ∑ 

i =1 

( 

N T ∑ 

y =1 ,y � = i 
d iy μyi + 

N T ∑ 

y =1 ,y � = i 
d iy 

N T ∑ 

y =1 ,y � = i,k � = y 
d yk (μxi ) 

f 

[ 

t x −
N T ∑ 

y =1 

t y ∑ N T 
k =1 

(μki ) f 
(μyi ) 

f 

] 2 
⎞⎠

(111)

here α and β are assumed to be positive coefficients, f is the

uzzification parameter, and d iy = 1 , if there is a connectivity be-

ween i and y . The first term in equation (111) ensures that N T 

lots can only be distributed among the N classes (nodes). The sec-

nd term minimizes the inter-class euclidean distance from a sam-

le to the cluster center of all clusters. Accordingly, FHNN aims

o classify N T time slots into N nodes by minimizing E . In simu-

ations, the proposed FHNN based BSP approach outperforms both

193,194] in terms of average time delay. Additionally, authors also

how that performance improves with larger f at the expense of

ncreased convergence time. 

There have also been efforts to advance the current MAC proto-

ols to react to different kinds of attack like DoS that can debilitate

oT devices. In one such case [197] , a MLP is used to modify carrier

ense multiple access (CSMA)-based network to identify DoS attack

nd stay inactive for a duration to preserve the energy of the wire-

ess sensor nodes. As shown in Fig. 10 , the MAC layer of each node

onsists of a MLP that has been trained prior to deployment. The
Fig. 10. Block diagram of MLP in MAC against DoS. 
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arameters used by MLP include collision rate ( c r ), packet request

ate ( P req ) and average packet wait time ( t w 

). The proposed solu-

ion is evaluated using both BP and the particle swarm optimiza-

ion (PSO) [198] algorithm for training. The authors show that BP

as lower computational cost compared to PSO but provides infe-

ior convergence point in terms of quality of the weights. The out-

ut of MLP represents the probability that there is an active DoS

ttack ( p t ). Based on the chosen threshold �th , the nodes decide to

leep for a predetermined period of time when p t > �th . The work

oes not discuss the optimal value for �th or the sleep time but

rovides an example of applying ML to mitigate the effects of such

ttacks. 

Another interesting application where ML, specifically RL, has

een successfully applied is in the domain of dynamic spectrum

ccess (DSA) for CR which could be instrumental in enabling mod-

rn IoT given the constrained availability of spectrum. An ALOHA-

ike scheme is developed for CRs by applying a multiagent RL

ramework [142] . In this work, a secondary user that is able to

ransmit successfully over an idle channel without collision re-

eives a positive reward and zero otherwise. ACK packets received

fter the transmission is used to ensure collision-free transmis-

ions. Since the secondary user does not have control over the

hannel state, the Q-function is defined as the expected reward

ver a given time slot t . This in turn depends on the state of the

verall system, S(t) = s and the node i ’s action ( a i ( t )) at time slot

 to transmit on channel h . The expectation is taken over the ran-

omness of other secondary user’s action and the primary user’s

ctivity which can be represented as, 

 

s 
ih = E[ R i | a i (t) = h, S(t) = s ] (112)

here R i is the rewards for action. To ensure good channels are

ot neglected, the authors propose the use of a Boltzmann distri-

ution for random exploration during the learning phase. Consid-

ring temperature T , the exploration probability is given as, 

 (i chooses channel h | state s ) = 

exp (Q 

s 
ih 
/ T ) ∑ N 

k =1 exp (Q 

s 
ih 
/ T ) 

(113)

To accomplish this, each secondary user considers both the

hannel and other secondary users to update its Q -values to choose

he best action. It is important to remember that this is an extreme

ase where no control packets are exchanged between nodes sim-

lar to traditional ALOHA. Furthermore, the authors were able to

how convergence in limited circumstances even when they ex-

end the full observations to the case of partial observations. Sim-

lations showed how secondary users can learn to avoid collision

nd outperform a scheme that uses Nash equilibrium. 

A similar case is considered in [199] where authors propose

 distributed DSA algorithm based on multi-agent reinforcement

earning but this time employing DRL. We have seen how Q-

earning provides adequate performance when the state-action

pace is relatively small. As the state-action space grows expo-

entially for larger problems, the direct application of Q-learning

ecomes inefficient and impractical as discussed previously. DQN

hich combines DNN with Q-learning can overcome this challenge.

he goal is to enable users to learn a policy while dealing with

he large state space without online coordination or message ex-

hanges between users. In [199] , the authors model their network

tate as partially observable for each user and the dynamics be-

ng non-Markovian and determined by the multi-user actions, they

ropose to use LSTM layer that maintains an internal state and ag-

regate observations over time. 

To ensure feasibility, the training is set to happen offline where

arious training experiences with changing environment and topol-

gy are considered. This ensures that the algorithm can be de-

loyed to operate in a distributed manner with the need to be
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Fig. 11. Framework for power control in cognitive network. 
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updated only if the operating conditions are significantly differ-

ent from the training set. After the training phase, each user de-

termines which channel to select and associate “attempt probabil-

ity” based on its observation. The proposed algorithm is compared

against slotted-ALOHA that is assumed to have complete knowl-

edge of the network and hence used optimal attempt probability.

The proposed distributed algorithm that only used ACKs to learn

outperforms slotted ALOHA by twice the channel throughput. They

evaluated the network for two network utilities, (i) network rate

maximization and (ii) individual rate maximization. In the case of

users whose objective was to maximize the sum rate of the net-

work, some learned to remain idle (sacrifice) incurring zero rate in

order to maximize the overall network utility. In contrast, when

each user aims to maximize its own rate they converged to a

Pareto-optimal sharing policy. 

The authors of [200] propose a DQN based framework that pro-

vides an Intelligent Power Control (IPC) algorithm for secondary

users to coexist with the primary user while ensuring QoS for both.

The overall architecture is depicted in Fig. 11 . The authors assume

the presence of several sensors that are deployed to monitor and

convey the received signal strength (RSS) to the secondary users

for decision making. The infinite states associated with the con-

tinuous RSS impose the need to employ DQNs. During the DQN’s

training phase, secondary users assume complete knowledge of

whether the QoS of every user (primary and secondary) are sat-

isfied. The authors argue this can be achieved by overhearing the

ACK packets. Once learning is complete, only the feedback from

the sensors is required to determine the optimal power level for

the secondary user to access the spectrum while satisfying the QoS

constraint of both the networks. IPC is compared against the dis-

tributed constrained power control (DCPC) algorithm [201] which

is an optimized solution. In contrast to IPC, an optimization-

based technique like DCPC requires cooperation between both pri-

mary and secondary users. The simulation shows how IPC con-

verges faster compared to DCPC while achieving a near optimal

solution. 

Realizing the role ML will play in the near future in maximizing

the use of scarce spectrum, Defense Advanced Research Projects

Agency (DARPA) initiated a three year competition known as Spec-

trum Collaboration Challenge (SC2). The goal was for teams to

propose an ML-based spectrum sharing strategy to allow peace-

ful coexistence between any unknown heterogeneous wireless net-

works. A solution inspired from this competition is presented in

[202] , which explores deep reinforcement learning multiple access

(DLMA) for a heterogeneous wireless network consisting of vari-

ous kind of networks (ALOHA, TDMA) that coexist. To accomplish

this, authors use DRL to learn spectrum usage from a series of en-

vironmental observations and actions without actually being aware
f the type of MAC protocols being operated. The goal is to maxi-

ize the total throughput of all the coexisting networks. They ex-

loit neural networks to employ DRL as compared to traditional RL

o enable fast convergence and ensure robustness to non-optimal

arameters. Fast convergence is essential for wireless networks as

onvergence time is shorter than coherence time which will give

odes an opportunity to operate using an optimal strategy rather

han trying to catch up with the changing efferent every time. Sim-

larly, the lack of knowledge of existing networks makes it difficult

o obtain optimal parameters. 

The possible actions that can be taken by an agent is

 ( t ) ∈ { wait , transmit }. The observation after taking one of these ac-

ions can be z ( t ) ∈ { success , collision , idleness }. Accordingly, the chan-

el state at t + 1 is given as an action-observation pair c(t + 1) �
 a (t) , z(t) } . Next, the environmental state at time t + 1 is given as

 (t + 1) � { c(t − h + 2) , . . . , c(t) , c(t + 1) } , where the parameter h

s the state history length to be tracked by the agent. The reward

or transitioning from s ( t ) to s (t + 1) is defined as, 

(t + 1) = 

{
1 , if z(t) = success 
0 , if z(t) = { col l ision idl eness } (114)

In this work, a DNN is used to approximate the state value

unction. Assuming φ is the parameter vector representing the

eights of the DNN, the approximation can be represented as

 ( s, a ; φ) ≈ Q 

∗( s, a ). The authors employ “experience replay”

203] which uses multiple experience samples (s, a, r(t + 1) , s (t +
)) in each training step using the following loss equation, 

 (θ ) = 

∑ 

(s,a,r,s ′ ) ∈ EX t 

( y r,s ′ − q (s, a ;φ) ) 
2 

(115)

here, 

 r,s ′ = r + γ max 
a ′ 

q (s ′ , a ′ ;φt ) (116)

here EX t is the set of experience samples used for training at

ime t . The authors argue the advantage of using DRL over RL by

howing a faster convergence rate and a near-optimal strategy be-

ng achieved through simulations. They show how the network can

earn and achieve near-optimal performance with respect to the

um throughput objective without the knowledge of co-existing

AC (TDMA, ALOHA). The work is further extended [204] by using

 residual network [205] in place of the DNN. The authors show

ow a single RN architecture with fixed depth is suitable to ever-

hanging wireless network scenarios as compared to the plain DNN

hich was shown to vary in performance based on the selected

umber of hidden layers. 

These works provide a promising direction towards solving the

pectrum crunch that will be experienced with the proliferation of
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Table 6 

Summary of application of ML in MAC protocols. 

MAC protocol ML algorithm Objective 

Salcedo-Sanz et al. [193] . HNN wt GA Proposed to solve BSP 

Shi and Wang [194] NCNN wt SVC Proposed to solve BSP 

Shen and Wang [195] FHNN Proposed to solve BSP 

Kilkarni and Venayagamoorthy [197] MLP Tolerance against DoS 

Li [142] RL ALOHA-like spectrum access 

Naparstek and Cohen [199] DQN wt LSTM ALOHA-linke spectrum access 

Li et al. [200] . DQN Intelligent power control 

Yu et al. [202] . DQN Non-coopertive heterogenous network 

Yu et al. [204] . DQN wt RN Non-coopertive heterogenous network 

I  

d

5

 

t  

t  

p  

s  

h  

t  

e  

t  

i

 

i  

i  

w  

t  

i  

Q  

a  

p  

o  

s  

t  

r  

i  

c  

r

 

t  

m  

v  

r  

i  

w  

t  

r  

t  

t  

b  

a  

w

 

e  

c  

o  

a  

s  

t  

f  

t  

C  

i  

t  

m  

t  

p  

a  

T  

S  

T  

s  

a  

v  

d  

t  

t  

c  

t  

p

 

d  

b  

n  

o  

p  

e  

t  

e  

a  

p  

t

 

s  

t  

e  

n  

t  

v  

t  

b  

i

 

r  

v  

g  

t  

s  

e  

n  

k  

r  

Q  
oT devices and 5G networks in the near future. We summarize the

iscussion of this section in Table 6 . 

.2. Network layer 

Routing protocols have evolved over the years to accommodate

he needs of modern IoT WANETs. The design of the routing pro-

ocols primarily depends on the context and objective of the ap-

lication and can be classified in several ways. Some of these clas-

ifications include geographical location based routing [206–209] ,

ierarchical [210] , QoS-based [211,212] , and recently cross-layer op-

imized routing [69,213–217] . Similar to earlier discussions, ML has

legantly found its way into this domain by providing a powerful

ool to solve some of the problems associated with designing rout-

ng algorithms. 

One of the earliest attempts to apply ML to routing algorithms

s presented in [218] in the context of a traditional wired network

ncluding Local Access and Transport Area (LATA) telephone net-

ork. The proposed algorithm, referred to as Q-routing, uses a dis-

ributed approach which gathers estimated delay information from

mmediate neighbors to make the routing decision. The proposed

-learning based routing algorithm can be represented as a vari-

tion of Bellman-Ford shortest path algorithm [219,220] that re-

laces hop count by delivery time and performs the relaxation step

nline in an asynchronous manner. In [218] , the authors clearly

howed how Q-routing is able to adapt to varying traffic loads af-

er the initial inefficient learning period. When the load is low, Q-

outing converges to using the shortest path and when the load

ncreases, it is capable of handling the congestion more elegantly

ompared to the shortest path routing that is forced to use static

outes. 

In a recent effort [221] , the need to reenvision router archi-

ectures and key routing strategies to meet the requirements of

odern networks is highlighted. This was motivated by the ad-

ent of the graphical processing unit accelerated software defined

outers that are capable of massive parallel computing. Accord-

ngly, authors propose to use DL, specifically, a deep belief net-

ork (DBN) based system that uses traffic patterns to determine

he routes. The authors demonstrated with simulations the supe-

iority of DBNs over open shortest path first (OSPF) in terms of

hroughput and average delay per hop. This can be attributed to

he reduced overhead as DBNs does not use the traditional rule-

ased approach. Some of these ideas are extendable to WANETs

fter careful consideration of the challenges and characteristics of

ireless networks. 

One of the key challenges that will be faced by IoT devices op-

rating in ad hoc mode is the reliability of routes that can get dis-

onnected due to channel conditions or node failure. The authors

f [222] study this problem in the context of multicast routing and

pply cerebellar model articulation controller (CMAC) [223] . To en-

ure reliability, wireless mesh networks need to have the ability

o recover from link disruption due to disrupted channel or node

ailure. The CMAC algorithm was first introduced around the same
ime that the perceptron algorithm was first introduced. While the

MAC framework can be considered a type of neural network, it

s fundamentally different from the ones previously described in

his paper. The CMAC architecture can be seen as an attempt to

odel human associative memory and employs a sort of look-up

able technique. The CMAC framework is characterized by a map-

ing from input space to memory address space (look-up table)

nd a subsequent mapping from address space to output space.

he mapping from input to address space is usually denoted as

 −→ A where S is the input space and A is the address space.

ypically, multiple mappings from input to address space are used

uch that a single input can “activate” multiple addresses in the

ddress space. Each address in the address space contains a weight

ector, w ∈ A , which is used in the subsequent mapping from ad-

ress space to output space, usually denoted as A −→ P . The func-

ion f : A −→ P is given to be the sum of the weight vectors con-

ained in the activated memory regions. The training of the model

an be conducted iteratively over training examples by updating

he weight vectors used in the computation of the output by some

roportion of the error observed for that training example. 

In [222] , authors use this concept to learn to estimate the route

isconnection expectancy between itself and access points (APs)

ased on the following three parameters, (i) delay of packets in a

ode (i.e. sum of queuing delay and processing delay), (ii) number

f node disconnections, and (iii) difference in delays between two

ackets that are separated by a predetermined number of pack-

ts. The proposed CMAC uses these three parameters to estimate

he node disconnection probability (NDP). Then the NDP estimate

nables nodes to predict possible node failure and react faster en-

bling better throughput, higher packet delivery ratio for multicast

ackets and provide minimum delay without prior knowledge of

he topology. 

Q-MAP is another multicast routing algorithm proposed to en-

ure reliable communication [224] . The algorithm is divided into

wo phases; in join query forward phase nodes use join query pack-

ts (JQPs) to explore all the possible routes to the multicast desti-

ation and join reply backward phase uses join reply packets (JRPs)

o establish the optimal route that maximizes the designed Q-

alue. The JQP can be considered as forwarding agents carrying

he possible Q-values downstream, subsequently, JRP packets can

e considered as backward agents carrying the optimal decision

nformation upstream to the source. 

In traditional unicast routing, the information used to make

oute decisions (such as resource reservation information, and Q

alue) are derived from downstream nodes. In contrast, Q-MAP

athers information from the upstream nodes that is used to make

he route selection. A simple topology is depicted in Fig. 12 where

rc is the source node and des is one of the destinations. In this

xample, node i needs to choose between j and k as the upstream

ode. Let us consider node i received a JQP from nodes j and

 . Accordingly, node i computes its reinforcement Q-function and

esource reservation data. Therefore, in this case, node i updates

 ( i, ux ) for any such JQP received from any upstream neighbor ux



34 J. Jagannath, N. Polosky and A. Jagannath et al. / Ad Hoc Networks 93 (2019) 101913 

Fig. 12. Framework for power control in cognitive network. 
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(which in this example is j and k ) as follows, 

Q t (i, ux ) ← (1 − α) Q t+1 (i, ux ) + α[ r + βQ 

∗
t (ux )] (117)

Next, node i configures its own JQP and floods the packet down-

stream. Subsequently, when i receives a JRP from a downstream

node (in this scenario des ), node i will choose an upstream for-

warding node that will eventually become part of the optimal

route as follows, 

Q 

∗
t (i ) = max 

ux 
Q t (i, ux ) ∀ ux ∈ (i, k ) (118)

Assuming that j is chosen as the forwarding node, in this case,

node i creates its JRP and floods it. Node j receives this JRP and

configures itself as the forwarding node for this multicast group

by setting its forwarding flag. Each node maintains a forwarding

table consisting of a source ID, group ID, forwarding flag indication

and a timer field indicating the expiry of the forwarding group.

In this manner, the multicast route is selected and maintained by

source periodically initiating JQP. If any given receiver does not

need to receive from a given source node, it just stops sending

JRP for the corresponding multicast group. In this work, the au-

thors do not discuss any experimental results, rather they keep the

design general stating that the reward function is designed based

on the objective of the network (maximize throughput, minimize

energy consumption, minimize latency, etc.) and accordingly the

corresponding resource reservation decision taken at each hop can

include bandwidth, power or time slot allocation. 

An unsupervised learning based routing referred to as Sensor

Intelligence Routing (SIR) is proposed in [225] . They modify the

Dijkstra’s algorithm utilizing SOM. Consider a directed connectivity

graph G(K, E ) , where K = { k 0 , k 1 , . . . , k N } is a finite set of nodes,

and (i, j) ∈ E represents unidirectional wireless link from node k i 
to node k j (for simplicity, they are refer to them as node i and node

j ). Each edge ( i, j ) has a score associated with it denoted by γ ij and

it is assumed that γi j = γ ji which depends on QoS requirements of

the network under consideration. In [225] , the authors use latency,

throughput, error-rate, and duty-cycle to represent a measure of

QoS. Accordingly, the authors use these metrics for each link to

represent their input of training vectors for a two-layer SOM ar-

chitecture as shown in Fig. 13 . The input layer consists of l = 4

neurons, for each input vector of x (t) ∈ R 

l . The second layer con-

sists of a rectangular grid, where each neuron has l weight vec-

tors connected from the input layer. During the learning phase,

competitive learning is used such that the neuron whose vector

most closely resembles the current input vector dominates. The

SOM clusters these link by assigning each cluster a QoS rating. The

learning phase is computationally intensive and hence needs to be

performed offline. Meanwhile, execution can run on computational

constrained sensor nodes and provide reliable performance as long

as the topology and operational characteristics do not change. 
The authors compare the proposed solution to Energy-Aware

outing (EAR) [226] and directed diffusion [227] . Directed diffu-

ion is a data-centric routing protocol where the sink first broad-

asts a request packet. This is used to set up a gradient (weighted

everse link) pointing to the sink (or the source of request). These

radients are used to find paths which are eventually pruned un-

il the optimal path is determined. In the case of EAR, the source

aintains a set of paths chosen by means of a certain probability

hat is inversely proportional to the energy consumption of that

iven route. The goal is to distribute traffic over multiple nodes

o improve the network lifetime. Simulations show that the advan-

age of using SIR becomes evident only when nodes in the network

tart to fail. The parameters used to train SOM enable SIR to choose

aths that are less prone to failure thereby providing better delay

erformance in scenarios where 40% nodes are prone to failure. 
An example of RL in geographical routing can be seen in [228] .

n Reinforcement Learning based Geographic Routing (RLGR), they
roposed a distributed algorithm that utilizes residual energy E r 
nd location of the neighbors. The MDP is characterized by the
tate of the packet which is defined by the current node where
he packet resides and the action represents the choice of next-hop
ased on the Q-value ( Q ( s, a )). In this work, the reward function is
iven by, 

 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

α ˜ δ + (1 − α) ̃  E , if next hop is not sink 

R C , if next hop is the sink 

−R D , if no next hop 

−R E , if next hop available but with low energy 

(119)

here ˜ δ represents the normalized advance towards the sink, Ẽ 

s the normalized residual energy. The authors consider a con-

tant reward, R C if the node is able to reach the sink directly.

inally, both R D and R E can be considered as the penalty suf-

ered if no next-hop is found or if the existing next-hop has en-

rgy below the threshold. The proposed algorithm also uses ε to

ndicate the probability of exploration, i.e. how often the node

ill choose a random neighbor which may not be the next-hop

hat has the largest Q-value. For all other occasions (probability

f 1 − ε), each node chooses a next-hop that provides the maxi-

um Q-value. Their simulations showed significant improvement

n network lifetime comparing RLGR to Greedy Perimeter Stateless

outing (GPSR) [206] . 

Next, we look at an example beyond RF terrestrial networks.

n underwater acoustic networks (UANs), maximizing network life-

ime is a key requirement. Accordingly, [229] propose a RL based

pproach that aims to distribute traffic among sensors to improve

he lifetime of the network. In this work, the system state related

o a packet is defined as the node that holds the packet. So s i 
enotes the state of a packet held by node i . The action taken

y node i to forward a packet to node j is denoted as a j . If this

ction is successful, the state transitions from s i to s j with the
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Fig. 13. SOM Architecture used in SIR. 
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p  

t

ransition probability of P 
j 

i j 
and stays in the same state s i with

ransition probability of P 
j 

ii 
= 1 − P 

j 
i j 

if it fails. Though these tran-

ition probabilities are unknown, authors argue that this can be

stimated at runtime based on history. Accordingly, the overall re-

ard function at time instant t can be defined as follows, 

 t = P j 
i j 

R 

j 
i j 

+ P j 
ii 

R 

j 
ii 

(120)

here, 

 

j 
i j 

= −c − α1 (E i + E j ) + α2 (D i + D j ) (121)

here α1 and α2 are tunable weights and c is the constant cost

ssociated with consumption of resource (bandwidth, energy etc.)

hen a node chooses to transmit. E i is the cost function associated

ith residual energy ( E res 
i 

) and inital energy ( E ini 
i 

). The energy cost

unction penalizes the system as residual energy decreases and is

efined as, 

 i = 1 − E res 
i 

E ini 
i 

(122) 

imilarly, D i is defined to measure the energy distribution balance

s follows, 

 i = 

2 

π
arctan (E res 

i − Ē i ) (123) 

here Ē i is the average residual energy of i and all its direct neigh-

ors. This parameter increases the chance of neighbors with higher

esidual energy being preferred. 

The reward function for the case where a packet forwarding at-

empt fails is defined as, 

 

j 
ii 

= −c − β1 E i + β2 D i (124)

here β1 and β2 are again tunable weights. Authors use Q-

earning at each node to enable them to learn about the environ-

ent using control packets and take action to improve network

ifetime. The proposed solution is shown to outperform the vector-

ased forwarding protocol [208] , a geographical routing protocol

esigned for UANs by achieving 20% longer lifetime. The authors

laim the proposed solution can be applied for various UAN appli-

ations by tuning the trade-off between latency and energy effi-

iency for network lifetime. 

Feedback Routing for Optimizing Multiple Sinks (FROMS)

230] is proposed to achieve near-optimal routing from multiple

ource to multiple sink nodes. The goal of each node is to de-

ermine neighbor(s) for next-hop(s) towards the intended subset
f sinks SK p ⊂ SK . The state is defined as a tuple, S = { SK p , H 

NB 
SK p 

} ,
here H 

NB 
SK p 

is the routing information through all neighboring

odes N B . The action is defined by a set A t = { a 1 , a 2 , . . . , a n } , such

hat a i = (nb i , SK i ) , where SK i ⊂ SK p . The complete action set A

ust ensure that each sink sk ∈ SK p must be considered by exactly

ne element a i ∈ A . The Q-value here is defined as follows, 

 t (a ) = 

( 

n ∑ 

i =1 

Q t (a i ) 

) 

− (n − 1) (125)

here, 

 t (a i ) = 

( ∑ 

sk ∈ SK i 

H 

nb i 
sk 

) 

− 2(| D i | − 1) (126)

here H 

nb i 
sk 

is the number of hops to the intended sink sk ∈ SK i 

hrough neighbor nb i . | SK i | denotes the number of sinks in SK i . The

oal of the learning process is to decrease the Q-value as much as

ossible such that nodes pick the action that corresponds to the

owest Q-value. Accordingly, the reward function is defined as fol-

ows, 

 t (a i ) = C + min 

a 
Q(a ) (127)

here C is the cost of the action. In this manner, the Q-values

ropagate upstream facilitating the learning process. During the

perational phase, it is assumed that nodes overhear neighbor’s

ackets and use the information contained in the packets to update

heir Q-value. Eventually, the goal is to use routes that will deliver

he packets to the desired subset of sinks through the least number

f total hops. The authors also explore both greedy exploration and

tochastic exploration techniques to avoid local minima. Simulation

esults validate the ability to learn shared routes to multiple sinks

n an efficient manner to decrease the cost per packet compared to

irected diffusion [231] . Additionally, they show how exploration

an further reduce the cost per packet albeit marginally. We sum-

arize these routing algorithms and the ML techniques they apply

n Table 7 . 

.3. Open problems and challenges 

In this section, we discuss some of the challenges and open

roblems specifically at the network and data-link layer in the con-

ext of IoT. 
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Table 7 

Application of ML in routing protocols. 

Routing protocol ML algorithm Objective/Comments 

Boyan and Littman [218] RL Variation of Bellman-Ford proposed for wired network 

Mao et al. [221] . DBN Outperform OSPF due to reduced overhead 

Sun et al. [224] . RL Multicast Routing Algorithm 

Pourfakhar and Rahmani [222] CMAC Proposed to improve reliability by predicting disconnection probabilities 

Barbancho et al. [225] . SOM Modified version of Dijkstra’s Algorithm 

Dong et al. [228] . RL Energy efficient geographical routing 

Hu and Fei [229] RL Liftime-aware routing for UAN that aims to distribute traffic load among nodes 

Forster and Murphy [230] RF Near-Optimal routing for multiple source to multiple sinks 
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5.3.1. Scalability and distributed operation 

The exponentially increasing number of IoT devices demand a

scalable networking architecture to enable large scale interactions

especially in the context of wireless communication. The spec-

trum congestion will imply more competition for limited resources.

While cross-layer approaches [215–217] have been studied in the

context of IoT to enable interaction between layers and optimize

the utilization of resources, the dimension of the optimization

problem space is increasing drastically. This is due to the explosion

in operational states (channel, residual energy, traffic level, level of

QoS, the density of the neighborhood, the priority of the entity,

among others) that must be considered during decision making.

This challenge is further exacerbated when a distributed opera-

tion is required to reduce the overhead and ensure scalability. In

these circumstances, novel ML approaches including DRL needs to

be explored in conjunction with network optimization techniques

[232,233] . 

5.3.2. IoT data-link and network layer security 

Another key aspect that needs attention at the data link and

network layer of the wireless IoT network is the security threat

due to various kinds of attacks [234] . In networks like the one es-

tablished by ZigBee devices, the attacker could eavesdrop and redi-

rect traffic, launching what is known as man-in-the-middle attack

[235] . In this attack, the attackers can reduce the performance of

the network or even intercept and change the transmitted data.

Energy efficiency is a key performance parameter of IoT networks.

Keep–Awake attack can be used to drain the battery of IoT de-

vices by sending control packets that constantly revive IoT devices

from their dormant sleep cycles [236] . Other attacks at the net-

work layer include selective forwarding and sinkhole (black hole)

attack [237,238] . In black hole or sinkhole attack, an attacker’s

node broadcasts more favorable routes attracting all traffic towards

it. Due to the enormous amount of traffic handled by the IoT net-

work it might be challenging to identify such attacks in an effi-

cient and effective manner. The inherent ability of ML to use the

“big data” to its advantage can be exploited to explore solutions

for these security concerns in IoT networks. 

6. Spectrum sensing and hardware implementation 

One of the key challenges in enabling real-time inference from

spectrum data is how to effectively and efficiently extract meaningful

and actionable knowledge out of the tens of millions of I/Q sam-

ples received every second by wireless devices. Indeed, a single

20 MHz-wide WiFi channel generates an I/Q stream rate of about

1.28 Gbit/s, if I/Q samples are each stored in a 4-byte word. More-

over, the RF channel is significantly time-varying ( i.e. , in the order

of milliseconds), which imposes strict timing constraints on the va-

lidity of the extracted RF knowledge. If (for example) the RF chan-

nel changes every 10ms, a knowledge extraction algorithm must

run with latency (much) less than 10ms to both (i) offer an ac-
urate RF prediction and (ii) drive an appropriate physical-layer

esponse; for example, change in modulation/coding/beamforming

ectors due to adverse channel conditions, local oscillator (LO) fre-

uency due to spectrum reuse, and so on. 

As discussed earlier, DL has been a prominent technology

f choice for solving classification problems for which no well-

efined mathematical model exists. It enables the analysis of un-

rocessed I/Q samples without the need of application-specific

nd computational-expensive feature extraction and selection al-

orithms [143] , thus going far beyond traditional low-dimensional

L techniques. Furthermore, DL architectures are application-

nsensitive, meaning that the same architecture can be retrained

or different learning problems. 

Decision-making at the physical layer may leverage the spec-

rum knowledge provided by DL. On the other hand, RF DL algo-

ithms must execute in real-time ( i.e. , with static, known-a-priori

atency) to achieve this goal. Traditional central processing unit

CPU)-based knowledge extraction algorithms [239] are unable to

eet strict time constraints, as general-purpose CPUs can be in-

errupted at-will by concurrent processes and thus introduce ad-

itional latency to the computation. Moreover, transferring data to

he CPU from the radio interface introduces unacceptable latency

or the RF domain. Finally, processing I/Q rates in the order of

bit/s would require CPUs to run continuously at maximum speed,

nd thus consume enormous amounts of energy. For these reasons,

F DL algorithms must be closely integrated into the RF signal pro-

essing chain of the embedded device. 

.1. Existing work 

Most of existing work is based on traditional low-dimensional

achine learning [240–244] , which requires (i) extraction and

areful selection of complex features from the RF waveform ( i.e. ,

verage, median, kurtosis, skewness, high-order cyclic moments,

tc.); and (ii) the establishment of tight decision bounds between

lasses based on the current application, which are derived ei-

her from mathematical analysis or by learning a carefully crafted

ataset [245] . In other words, since feature-based machine learn-

ng is (a) significantly application-specific in nature; and (b) it

ntroduces additional latency and computational burden due to

eature extraction, its application to real-time hardware-based

ireless spectrum analysis becomes impractical, as the wireless ra-

io hardware should be changed according to the specific applica-

ion under consideration. 

Recent advances in DL [246] have prompted researchers to in-

estigate whether similar techniques can be used to analyze the

heer complexity of the wireless spectrum. For a compendium

f existing research on the topic, the reader can refer to [247] .

mong other advantages, DL is significantly amenable to be used

or real-time hardware-based spectrum analysis, since different

odel architectures can be reused to different problems as long as

eights and hyper-parameters can be changed through software.
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dditionally, DL solutions to the physical layer modulation recog-

ition task have been given much attention over recent years,

s previously discussed in this work. The core issue with exist-

ng approaches is that they leverage DL to perform offline spec-

rum analysis only. On the other hand, the opportunity of real-time

ardware-based spectrum knowledge inference remains substan-

ially uninvestigated. 

.2. Background on system-on-chip computer architecture 

Due to its several advantages, we contend that one of the most

ppropriate computing platform for RF DL is a system on chip

SoC). An SoC is an integrated circuit (also known as “IC” or “chip”)

hat integrates all the components of a computer, i.e. , CPU, ran-

om access memory (RAM), input/output (I/O) ports and secondary

torage ( e.g. , SD card) – all on a single substrate [248] . SoCs have

ow power consumption [249] and allow the design and imple-

entation of customized hardware on the field-programmable gate

rray (FPGA) portion of the chip, also called programmable logic

PL). Furthermore, SoCs bring unparalleled flexibility, as the PL can

e reprogrammed at-will according to the desired learning design.

he PL portion of the SoC can be managed by the processing sys-

em (PS), i.e. , the CPU, RAM, and associated buses. 

SoCs use the Advanced eXtensible Interface (AXI) bus specifi-

ation [250] to exchange data (i) between functional blocks inside

he PL; and (ii) between the PS and PL. There are three main AXI

ub-specifications: AXI-Lite, AXI-Stream and AXI-Full . AXI-Lite is a

ightweight, low-speed AXI protocol for register access, and it is

sed to configure the circuits inside the PL. AXI-Stream is used

o transport data between circuits inside the PL. AXI-Stream is

idely used, since it provides (i) standard inter-block interfaces;

nd (ii) rate-insensitive design, since all the AXI-Stream interfaces

hare the same bus clock, the high-level synthesis (HLS) design

ool will handle the handshake between DL layers and insert FIFOs

or buffering incoming/outgoing samples. AXI-Full is used to en-

ble burst-based data transfer from PL to PS (and vice versa ). Along

ith AXI-Full, direct memory access (DMA) is usually used to allow

L circuits to read/write data obtained through AXI-Stream to the

AM residing in the PS. The use of DMA is crucial since the CPU

ould be fully occupied for the entire duration of the read/write

peration, and thus unavailable to perform other work. 

.3. A design framework for real-time RF deep learning 

One of the fundamental challenges to be addressed is how to

ransition from a software-based DL implementation ( e.g. , devel-

ped with the Tensorflow [239] engine) to a hardware-based im-

lementation on an SoC. Basic notions of high-level synthesis and

 hardware design framework are presented in Sections 6.3.1 and

.3.2 , respectively. 
Fig. 14. Loop p

. 
.3.1. High-level synthesis 

HLS is an automated design process that interprets an algorith-

ic description of a desired behavior ( e.g. , C/C++) and creates a

odel written in hardware description language (HDL) that can be

xecuted by the FPGA and implements the desired behavior [251] .

esigning digital circuits using HLS has several advantages over

raditional approaches. First, HLS programming models can imple-

ent almost any algorithm written in C/C++. This allows the de-

eloper to spend less time on the HDL code and focus on the algo-

ithmic portion of the design, and at the same time avoid bugs and

ncrease efficiency, since HLS optimizes the circuit according to the

ystem specifications. The clock speed of today’s FPGAs is several

rders of magnitude slower than CPUs ( i.e. , up to 20 0–30 0 MHz in

he very best FPGAs). Thus, parallelizing the circuit’s operations is

rucial. In traditional HDL, transforming the signal processing algo-

ithms to fit FPGA’s parallel architecture requires challenging pro-

ramming efforts. On the other hand, an HLS toolchain can tell

ow many cycles are needed for a circuit to generate all the out-

uts for a given input size, given a target parallelization level. This

elps to reach the best trade-off between hardware complexity and

atency. 

Loop pipelining: In high-level languages (such as C/C++), the op-

rations in a loop are executed sequentially and the next iteration

f the loop can only begin when the last operation in the current

oop iteration is complete. Loop pipelining allows the operations in

 loop to be implemented in a concurrent manner. 

Fig. 14 shows an example of loop pipelining, where a simple

oop of three operations, i.e. , read (RD), execute (EX), and write

WR), is executed twice. For simplicity, we assume that each op-

ration takes one clock cycle to complete. Without loop pipelining,

he loop would take 6 clock cycles to complete. Conversely, with

oop pipelining, the next RD operation is executed concurrently to

he EX operation in the first loop iteration. This brings the total

oop latency to 4 clock cycles. If the loop length were to increase

o 100, then the latency decrease would be even more evident: 300

ersus 103 clock cycles, corresponding to a speedup of about 65%.

n important term for loop pipelining is called initiation interval

II), which is the number of clock cycles between the start times

f consecutive loop iterations. In the example of Fig. 14 , the II is

qual to one, because there is only one clock cycle between the

tart times of consecutive loop iterations. 

Loop unrolling: Loop unrolling creates multiple copies of the

oop body and adjusts the loop iteration counter accordingly. For

xample, if a loop is processed with an unrolling factor (UF) equal

o 2 ( i.e. , two subsequent operations in the same clock cycle as

hown in Fig. 15 ), it may reduce a loop’s latency by a factor of

0%, since a loop will execute in half the iterations usually needed.

igher UF and II may help achieve low latency, but at the cost

f higher hardware resource consumption. Thus, the trade-off be-

ween latency and hardware consumption should be thoroughly

xplored. 
ipelining. 
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Fig. 15. Loop unrolling. 
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6.3.2. Design steps 

Our framework presents several design and development steps,

which are illustrated in Fig. 16 . Steps that involve hardware, mid-

dleware ( i.e. , hardware description logic, or HDL), and software

have been depicted with a blue, red, and green shade, respectively.

The first major step of the framework is to take an existing

DL model and convert the model in HLS language, so it can be

optimized and later on synthesized in hardware. Another critical

challenge is how to make the hardware implementation fully re-

configurable, i.e. , the weights of the DL model may need to be

changed by the Controller according to the specific training. To ad-

dress these issues, we distinguish between (i) the DL model archi-

tecture, which is the set of layers and hyper-parameters that com-

pose the model itself, and (ii) the parameters of each layer, i.e. , the

neurons’ and filters’ weights. 

To generate the HLS code describing the software-based DL

model, an HLS Library , which provides a set of HLS functions that

parse the software-based DL model architecture and generates the

HLS design corresponding to the desired architecture. The HLS Li-

brary supports the generation of convolutional, fully-connected,

rectified linear unit, and pooling layers, and operated on fixed-

point arithmetic for better latency and hardware resource con-

sumption. The HLS code is subsequently translated to HDL code

by an automated tool that takes into account optimization direc-

tives such as loop pipelining and loop unrolling. At this stage, the

HDL describing the DL core can be simulated to (i) calculate the

amount of PL resources consumed by the circuit ( i.e. , flip-flops,

BRAM blocks, etc); and (ii) estimate the circuit latency in terms of

clock cycles. After a compromise between space and latency as dic-

tated by the application has been found, the DC core can be syn-

thesized and integrated with the other PL components, and thus

total space constraints can be verified. After implementation ( i.e. ,

placing/routing), the PL timing constraints can be verified, and fi-
Fig. 16. Ahardware design frame
ally the whole system can be deployed on the SoC and its func-

ionality tested. 

.4. Open problems and challenges 

In this section, we discuss a set of open challenges overcoming

hich will accelerate the induction of ML techniques to the IoT

ardware especially in the context of spectrum sensing. 

.4.1. Lack of large-scale wireless signal datasets 

It is well known that learning algorithms require a consider-

ble amount of data to be able to effectively learn from a train-

ng dataset. Moreover, to compare the performance of different

earning models and algorithms, it is imperative to use the same

ets of data. More mature learning fields, such as computer vi-

ion and natural language processing (NLP) already have standard-

zed datasets for these purposes [252,253] . However, literature still

acks large-scale datasets for RF ML. 

This is not without a reason. Although the wireless domain al-

ows the synthetic generation of signals having the desired char-

cteristics ( e.g. , modulation, frequency content, and so on), prob-

ems such as RF fingerprinting and jamming detection require data

hat captures the unique characteristics of devices and wireless

hannels. Therefore, significant research effort must be put forth

o build large-scale wireless signal datasets to be shared with the

esearch community at large. 

.4.2. Choice of I/Q data representation format 

It is still subject of debate within the research community what

s the best data representation for RF deep learning applications.

or example, an I/Q sample can be represented as a tuple of real

umbers or a single complex number, while a set of I/Q samples

an be represented as a matrix or a single set of numbers repre-

ented as a string. It is a common belief that there is no one-size-

ts-all data representation solution for every learning problem, and

hat the right format might depend, among others, on the learn-

ng objective, choice of the loss function, and the learning problem

onsidered [143] . 

.4.3. Choice of learning model and architecture 

While there is a direct connection between images and tensors,

he same cannot be concluded for wireless signals. For example,

hile 3-D tensors have been proven to effectively model images

 i.e. , red, green, and blue channels), and kernels in convolutional

ayers are demonstrably powerful tools to detect edges and con-

ours in a given image, it is still unclear if and how these concepts
work for RF deep learning. 
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an be applied to wireless signals. Another major difference is that,

hile images can be considered as stationary data, RF signals are

nherently stochastic, non-stationary and time-varying. This pecu-

iar aspect poses significant issues in determining the right learn-

ng strategy in the wireless RF domain. For example, while CNN

eems to be able to effective at solving problems such as mod-

lation recognition [143,146,148] , it is still unclear if this is the

ase for complex problems such as RF fingerprinting. Moreover, DL

as traditionally been used in static contexts [254,255] , where the

odel latency is usually not a concern. Another fundamental is-

ue absent in traditional deep learning is the need to satisfy strict

onstraints on resource consumption. Indeed, models with a high

umber of neurons/layers/parameters will necessarily require addi-

ional hardware and energy consumption, which are clearly scarce

esources in embedded systems. Particular care must be devoted,

herefore, when designing learning architectures to solve learning

roblems in the RF domain. 

. Machine learning in IoT beyond communication 

The core objective of this work is to provide a comprehensive

ccount of the applications of ML for communication in IoT. In this

ection, for the benefit of readers who might be exploring ML for

ommunication in conjunction with other IoT related areas of re-

earch, we provide a brief discussion on how ML has been ap-

lied to areas like security (beyond communication surfaces) and

ig data analysis. This is not intended to be as comprehensive as

he earlier sections of this survey but provides the adequate re-

ources for readers to understand the broad nature of ML being

pplied in these areas by pointing them to the relevant resources. 

.1. Security in IoT 

Due to the complex and integrative arrangement of IoT de-

ices, it can be prone to a wide range of attacks. Limited com-

utation and power resources, a wide range of accessibility, and a

arge amount of data being handled leads to challenging circum-

tances to defend IoT devices from security threats. The interde-

endent and interconnected environment in which IoT devices op-

rate leads to vast numbers of attack surfaces to monitor and man-

ge. 

ML has been leveraged as a powerful tool that can monitor the

ast number of IoT devices to detect and alert operators of immi-

ent security threats [256] . One of the key security concern in an

oT network is the presence of intruders that may induce malicious

ehavior. Several of the ML techniques have been used to detect

hese forms of attacks. In one of the earliest works [257] , the au-

hor proposed a robust SVM-based solution to intruder detection.

his involved analyzing 1998 DARPA Basic Security Module data set

ollected at MIT’s Lincoln Labs. Recently, a SVM-based hybrid de-

ection method that integrates the misuse detection model and an

nomaly detection model has been proposed in [258] . The solu-

ion is shown to be computationally efficient, and capable of pro-

iding better detection rate for both known and unknown attacks

hile maintaining a low probability of false alarm. RNN, specifi-

ally LSTM have been proposed as an effective tool to detect mali-

ious activity [259] especially for time-series based threats. 

Since IoT devices are often connected to Android-based mobile

evices in order to enable remote control and configuration, there

as been a growth in malware developers. Malware enables devel-

pers to control compromised devices to extract private user infor-

ation or constructing botnets. Several ML techniques have been

pplied to detect such malware attack. Few examples include a

VM-based malware detection to ensure reliable IoT services [260] ,

alware detection using CNN [261] and an autoencoder-based ap-

roach [262] . 
.2. Big data analytics 

The large amount of data generated and/or flowing through

oT devices have been referred to as smart data [263,264] and

ave been used to feed various ML tools to enable several applica-

ions in traffic, energy management, health, environment, homes,

griculture, among others. The analysis of data can happen data

enters (cloud computing) [265] , edge devices (edge computing)

266] or edge servers (fog computing) [267] based on the compu-

ation requirement, acceptable latency, among other factors. 

To identify regular traffic patterns, authors of [268] employs

BSCAN algorithm to analyze various trips using the operator’s

mart card to detect regular travel patterns and then use K-Means

lgorithm to classify these travel patterns. This information can

hen be utilized for city planning and identify the optimal use of

udget to add critical infrastructure. In [269] , an example of using

oT data in predictive analysis for enhanced decision making has

een provided. In this particular example, the authors’ goal was to

redict energy usage of a building using four ML models used by

he WEKA data mining software [270] which includes SVM for re-

ression, two ANN architectures, and linear regression. 

Another example of ML being applied to classify big data is pro-

ided in [271] . Here, the authors provide a hybrid (unsupervised

nd supervised learning) solution to classify the multi-variate time

eries sensor data that includes environmental variables viz. tem-

erature, humidity, light, and voltage. The authors first apply sim-

le aggregation approximation (SAX) representation to the data in

rder to reduce its dimensions. Next, clustering techniques are ap-

lied to learn the target classes and SVM was used thereafter to

erform classification. 

Management of a large number of IoT devices is also becoming

 challenging task taking into consideration the limited resources

ach of these devices house. Operational indicators of IoT devices

hat represent the reliability, QoS, productivity, etc. are received

rom the management protocols. The set of these values are re-

erred to as the state of the IoT device in [272] . To enable bet-

er management and mitigate the problems arising from inefficient

se of limited resources, the authors propose an ANN-based frame-

ork that enables prediction of IoT device state enabling higher ef-

ciency in their decision making process for a wide variety of ap-

lications. These are just a subset of applications where data ana-

ytics has been exploited using ML. Big data analytics will also find

ts application in health care, education, smart grid as well as other

omponents forming a smart city. 

.3. Open problems and challenges 

.3.1. Data analytics 

The quality of data is a key factor affecting the efficacy of the

L techniques applied for data analytics. The quality of sensors,

he environmental condition, protocols and hardware employed

long with several other factors may affect the quality of the data

enerated by IoT devices. This along with the fact that this data is

roduced in high volume, high velocity and its nature vary based

n devices, application, and protocols used by these devices. It be-

omes an extremely challenging task to assess the quality of in-

oming data. The computational load required to analyze the data

or quality, pre-process to enhance the data and subsequently per-

orm application-specific data analysis in real-time will continue to

e a daunting problem as the IoT revolution grows exponentially. 

Beyond the quality and computational requirement of handling

he data, the overarching legal and ethical concerns of handling

ata emanating from various IoT devices will also have to be ex-

lored in greater depth. It will be challenging to reach consensus

n defining the optimal procedure/methodology of handling crit-

cal data regarding health, law enforcement or national security
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among others. The same data that is collected in a different con-

text may directly impact is accessibility and sensitivity. In certain

cases, the location where the data is stored (data centers) for com-

putation can be critical to the application of the agency that gen-

erates the data. This may induce further constraints on the com-

putational requirements. Since there is a never-ending struggle be-

tween the need of applying a centralized form of secure data han-

dling while requiring more scalable, distributed, and low overhead

operations, there will always be open challenges to determine the

Pareto-optimal solutions to handle the vast amount of IoT data. 

7.3.2. Security 

Most ML techniques employed to enhance the security of IoT

that rely on supervised learning are predominantly trained using

simulated or emulated data. This is due to the fact that it is very

challenging to gather training data that has been obtained dur-

ing real-world attack scenarios. An important research direction is

to cooperatively obtain crowd-sourced data set from IoT deployed

by different commercial, government and academic entities. This

again will be a challenge due to the privacy, propriety and other

regulatory, proprietary concerns discussed in the earlier section.

Assuming this will be a difficult task in the near future, signifi-

cant research will be required to design ML techniques that can

provide adequate real-world protection even when trained on em-

ulated/simulated data sets. 

The next-generation of ML-based solution needs to be able to

adapt to the ever-changing landscape of the attack methodolo-

gies. Signature-based malware detection may be unable to detect

zero-day attack or malware that evolve continuously as in case of

metamorphic and polymorphic malware. A new emerging threat

that was previously unknown to the malware detector is referred

to as Zero-day attack. Though there have been recent efforts to

tackle these problems [273,274] , there is a significant opportunity

to employ ML to mitigate or eradicate the damages caused by ever-

evolving security threats. 

8. Conclusion 

This paper provides a comprehensive account of advances in

IoT wireless communication made possible by the application of

ML. To accomplish this, we first provide readers with a detailed

overview of some of the most prevalent ML techniques that are

employed in wireless communication networks. We have done so

with the hope that by elucidating the inner workings of some of

the ML algorithms relevant to communication in the IoT, we have

not only enabled the reader to understand the subsequent text at a

deeper level but inspired other researchers to apply the techniques

discussed to their own problems in IoT communication. To a lesser

degree, we have written the overview with the intent of provid-

ing a light foray into ML for the unfamiliar reader. While it is not

an all-encompassing field guide to ML, the overview covers many

of the popular algorithms from the different sub-fields of ML and

aims to provide an intuition surrounding their use. 

Next, we presented an overview of the current state-of-the-art

of IoT communication, the standardization efforts, challenges and

how CR aspect along with ML approaches are exploited to address

some of these. CR along with ML is a powerful tool that can take

the IoT technologies a step forward in mitigating the myriad prob-

lems that arise from large deployments. We provided a glimpse of

the subset of works proposed in realizing the IoT vision for the

foreseeable future dense, large scale IoT deployment. The COGNI-

COM+ framework is inspiring but has a long development road

ahead to realize the plethora of approaches presented from design-

ing ASIC-based CNN accelerators to developing the fully realized

COGNICOM+. Recent works have taken algorithmic designs from

simulations to real testbed implementations. More such works are
ssential to realize the challenges and pave way for future CR-IoT.

owever, the scalability of such a centralized solution might be

hallenging for a large and dense deployment. The big data analyt-

cs and management will need to be addressed for such centralized

pproaches when applied to dense deployment. Instilling ML tech-

iques for future CR-IoT enables intelligent resource management

uch as radio resource optimization via intelligent beamforming,

hannel equalization, adaptive power and rate control, spectrum

llocation and management. Conventional techniques involve op-

imization techniques performed in an offline/semi-offline manner

ut ML enables such optimization to be performed in an online

ashion in real-time. ML approaches continue to learn and adapt

o the varying parameters improving the cognition of the system.

uch intelligent online decision making will best fit the future

R-IoT. 

Following the discussion of the application of ML to problems

n the physical layer, we introduce the use of ML techniques for

ignal intelligence tasks in the realm of the IoT. We describe how

L, and often DNNs, can be used to enhance the efficacy of the

iscriminative classification tasks of AMC and wireless interfer-

nce classification. The common narrative underlying the presen-

ation of these tasks and their respective solutions is that hand-

rafted feature-based classifiers of old are outperformed by their

NN counterparts. Not only do the ML and DL solutions presented

n this section improve upon classification accuracies, but they also

llow for a model to be learned directly on the raw signal repre-

entation. The advantages of such a result are two-fold. First, learn-

ng a model that operates directly on the raw signal reduces the

eed for preprocessing of the data, in turn reducing latency and

omputational load, both of which often have stringent constraints

n IoT networks. Second, the use of hand-crafted signal features

imits the model’s ability to adapt to new input, thus reducing the

pplicability of the learned model to new data sets. The raw sig-

al representation is the most information-rich representation of

he signal and thus reducing it to a set of hand-crafted features

educes the information content. The crux of DL is to allow the

lgorithm to determine what aspects of and interactions between

he data are important for a given task, and thus providing the al-

orithm with more information (raw signal) allows for a more ver-

atile model. This is important with respect to the IoT as the wire-

ess networks, communication protocols, and RF signals that arise

n the IoT are not uniform, placing a premium on solutions that

re easily adaptable to new scenarios and problem formulations.

uch is the reason motivating the use of ML in signal intelligence

roblems within the IoT. 

Thereafter, we detail the increasing relevance of these tech-

iques in the higher layers of the protocol stack enabling opti-

ized utilization of limited resources which will be key to support

he rapid growth of IoT devices. Deploying a dense IoT network

ay rely on TDMA to broadcast information to each other. In these

cenarios, the BSP is essentially a TDMA cycle minimization prob-

em which is known to be NP-complete. In this work, we have seen

ow ML techniques have been successfully applied to these NP-

omplete problems which otherwise is challenging to overcome.

hile some of the solutions designed to overcome BSP provided

cceptable results they unfortunately required long computational

ime to reach the solution. By Applying FHNN to solve BSP, the

roblem was formulated as one that aims at minimizing the en-

rgy function associated with FHNN. This approach outperformed

he existing methodologies in terms of convergence rate. This is

ne example where ML is applied to an intractable problem of

ireless communication which in this case was to determine the

on-conflicting transmission schedule that maximizes the utiliza-

ion of the channel. Another key application of ML during medium

ccess is its ability to sense the spectrum and provide insight

nto the IoT devices regarding possible active attacks. This is then



J. Jagannath, N. Polosky and A. Jagannath et al. / Ad Hoc Networks 93 (2019) 101913 41 

l  

s  

e

 

c  

p  

e  

o  

m  

t  

s  

v  

o  

e  

b  

p  

k  

c  

i  

l  

f  

n  

c  

t

 

c  

t  

p  

k  

u  

w  

o  

a  

o  

w  

c  

t  

i

C

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

everaged by the decision engine to determine appropriate re-

ponses to mitigate the attack or alert the presence of a malicious

ntity in the spectrum of interest. 

RL becomes an excellent candidate to enable DSA and other

ognitive radio solutions because of the inherent nature of the

roblem that can be modeled as MDP. Thereafter, Q-learning or

ven DQN (for large state-action space) can be used to determine

ptimal action for a given state of the agent (transceiver). These

odels can be used by the data link layer for power control, nego-

iating spectrum access and to determining optimal transmission

trategies. Similarly, at the network layer, Q-learning is used in

arying traffic loads to handle congestion and QoS requirements,

ptimize network parameters like delay, throughput, fairness, and

nergy efficiency. In contrast to traditional approaches, ML has also

een used to predict route failures enabling more rapid recovery

rocess which can be critical to large distributed IoT networks. A

ey point to remember in the context of feasibility is that in many

ases the learning phase might be computationally intensive and

s performed offline. On the other hand, the execution itself can be

ight-weight thereby making ML based approaches more feasible

or IoT devices. Realizing the importance of extending these tech-

iques to hardware implementation, we discuss some steps that

an be taken in those directions to ensure a rapid transition of

hese techniques to commercial hardware. 

Finally, we have also looked at a couple of key areas beyond

ommunication where ML is being leveraged as an effective tool in

he realm of IoT. Various supervised ML techniques are being em-

loyed to detect intruders and malicious behaviors which can be a

ey application given the risk of such attack on IoT devices. This is

sually possible by analyzing the large amount of data associated

ith IoT. Furthermore, we have also presented some recent efforts

f where big data analytics has been performed using ML as it is

 significant emerging and motivating factor in the current surge

f IoT. The overarching goal of this paper is to enable researchers

ith the fundamental tool to understand the application of ML in

ontext of wireless communication in the IoT and apprise them of

he latest advancements that will, in turn, motivate new and excit-

ng works. 
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