
Machine Learning Subsystem for Autonomous

Collision Avoidance on a small UAS with

Embedded GPU

Nicholas Polosky, Tyler Gwin, Sean Furman, Parth Barhanpurkar, Jithin Jagannath

Marconi-Rosenblatt AI/ML Innovation Lab, ANDRO Computational Solutions, LLC, Rome NY

{npolosky, tgwin, sfurman, pbarhanpurkar, jjagannath}@androcs.com

Abstract—Interest in unmanned aerial system (UAS) powered
solutions for 6G communication networks has grown immensely
with the widespread availability of machine learning based auton-
omy modules and embedded graphical processing units (GPUs).
While these technologies have revolutionized the possibilities of
UAS solutions, designing an operable, robust autonomy frame-
work for UAS remains a multi-faceted and difficult problem. In
this work, we present our novel, modular framework for UAS
autonomy, entitled MR-iFLY, and discuss how it may be extended
to enable 6G swarm solutions. We begin by detailing the chal-
lenges associated with machine learning based UAS autonomy
on resource constrained devices. Next, we describe in depth,
how MR-iFLY’s novel depth estimation and collision avoidance
technology meets these challenges. Lastly, we describe the various
evaluation criteria we have used to measure performance, show
how our optimized machine vision components provide up to 15X
speedup over baseline models and present a flight demonstration
video of MR-iFLY’s vision-based collision avoidance technology.
We argue that these empirical results substantiate MR-iFLY as a
candidate for use in reducing communication overhead between
nodes in 6G communication swarms by providing standalone
collision avoidance and navigation capabilities.

Index Terms—UAS Autonomy, machine learning, machine
vision, embedded device

I. INTRODUCTION

In this work, we design and demonstrate our approach to an

autonomy engine deployable on a small UAS equipped with an

embedded GPU-capable device. The proposed technology is a

novel, general-purpose UAV autonomy framework providing

robust perception, collision avoidance, and human-machine

teaming for small UAS missions. The full capabilities of

our framework are enabled using only basic inertial sensors

and a monocular RGB camera. These capabilities are pow-

ered by both machine learning based and analytic autonomy

components whose interaction provides state-of-the-art sensor

enhancement and robust algorithmics. The developed frame-

work has been successfully flight tested on commercial-off-

the-shelf (COTS) quadcopters equipped with embedded GPU

devices. We call the presented framework Marconi-Rosenblatt

framework for intelligent autonomous UAV (MR-iFLY).

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) This
material is based upon work supported by the US Navy Contract No.
N6833520C0964. (b) Any opinions, findings and conclusions or recommenda-
tion expressed in this material are those of the author(s) and do not necessarily
reflect the views of the US Navy.

Autonomous capabilities for UAS have the potential to

revolutionize a multitude of industries and applications [1].

This potential, along with increasingly affordable costs of

GPU-enabled embedded devices, has garnered significant in-

terest in drone-powered solutions within the communications

industry [2]. In particular, UAS swarm and 6G technologies

have great potential to impact everyday life. The higher

frequencies associated with 6G technology often require line-

of-sight (LOS) or minimally occluded communication links.

With the current communication infrastructure consisting of

base stations, these high frequencies pose major challenges

for the quality of service and network coverage. To mitigate

such challenges, solutions employing swarms of small UAS

to provide mobile hotspots with advantageous vantage points

have been proposed to provide customers with high data-

rates [3] [4].

While this solution provides LOS and minimally occluded

links, the feasibility of such a solution remains in question

due to the challenges associated with swarm operation. Impor-

tantly, it is infeasible for human operators to control swarms

due to their number, thereby necessitating autonomous UAS

capabilities to enable 6G swarm technologies. In addition

to this obvious problem, autonomous swarms will need to

possess capabilities to evade aerial obstacles and other swarm

members; the latter of which has garnered solutions involving

communicating and relaying swarm members’ locations across

the network. Unfortunately, such network traffic reduces the

bandwidth available for the customer below.

Contribution. In response to the described problem, we

propose a unique autonomous UAS framework, MR-iFLY,

designed to operate on an embedded GPU device with a

low SWaP sensor configuration. We augment state-of-the-art

machine vision models via model reduction and hardware-

specific optimization techniques to allow for efficient inference

on embedded GPU devices. MR-iFLY subsequently employs

these optimized models in conjunction with traditional analytic

autonomy components to provide robust collision avoidance

and navigation. Furthermore, MR-iFLY has been successfully

deployed on a small UAS equipped with an embedded GPU

and requires a minimal sensor configuration.

Impact. Robust, vision-based collision avoidance and au-

tonomy for UAS can minimize, if not eliminate, the need for

communication overhead in 6G swarm networks. Enhanced



with onboard machine perception, UAS repeaters may perceive

each other and environmental obstacles, and subsequently plan

actions to avoid collisions while freeing bandwidth for users.

Further, efficient implementations provide lower decision-

making latencies preventing the vulnerability of broken links

in cloud-based solutions. We believe that the work described

herein is a step towards confirming the feasibility of an

autonomous UAS solution which, in the future, could be

extended to aid a 6G swarm solution.

II. CHALLENGES AND DESIGN PHILOSOPHY

In this section, we provide a brief overview of the challenges

that engineers meet when designing an autonomy framework

for embedded deployment. For each challenge, we discuss how

our design philosophy meets these challenges.

A. Sensor Selection

The selection of UAS sensors has implications that affect

almost every other aspect of the design of the framework;

the sensor selection will determine the degree to which the

UAS can perceive the operational environment and the amount

of computational resources required to process sensor data.

In addition to sensor selection, it is important to account

for particular algorithmic components that will enhance or

supplement sensor readings.

We believe that the majority of the necessary environmental

information can be captured using a sensor suite consisting of

a monocular RGB camera, inertial measurement unit (IMU)

sensors, optical flow sensors, and GPS. Each of the afore-

mentioned sensors is monetarily inexpensive and offers high

sample rates. For these reasons, we believe that the described

sensor suite renders MR-iFLY an affordable and effective

solution for applications such as 6G swarm technologies. We

note that, should other sensors be available aboard deployment

UASs, they may be used to enhance the perceptual components

of MR-iFLY, but that our goal in sensor selection was to ensure

universality via the framework’s minimal sensor requirement.

To supplement our sensor suite, we employ machine learning-

based computer vision techniques to extract information from

the RGB observations. The field of machine learning based

computer vision is burgeoning with techniques to enhance

monocular camera-based systems, allowing for the replace-

ment of traditional sensors (such as stereo, LiDAR, etc.) with

software algorithms (depth estimation). In MR-iFLY, we posit

that the reduction in sensing fidelity is worth the reduction in

sensing overhead, power consumption, and data processing.

B. Computational Resources

On a small UAS with an embedded computing system, the

computational complexity of the algorithmic components and

data processing techniques is of paramount importance. Many

applications require near real-time response times and thus

each component of the data processing pipeline should be

carefully engineered to operate as efficiently as possible. This

often requires re-implementing or adjusting out-of-the-box or

open-source software solutions to fit the computational needs

of the application.

Out-of-the-box neural network models often require pro-

hibitively long inference times to yield their outputs. Accord-

ingly, using such models in an embedded autonomy framework

requires manipulating the models to reduce latency. In MR-

iFLY, we use two separate techniques to this end: model

reduction via knowledge distillation and hardware-specific

optimization using TensorRT. Knowledge distillation reduces

model size by teaching a smaller network to mimic a larger

pre-trained network. TensorRT operates by running multiple

tests on the embedded hardware to determine how to optimize

each network operation. In some cases, these techniques are

not enough and engineers should consider training custom

networks. If this latter option does not yield desirable results

traditional computer vision methods may be investigated.

C. Robustness

While algorithmic efficiency is critical, algorithmic robust-

ness is tantamount. UASs often encounter varied operational

scenes and environments yielding very different sensor read-

ings and interference conditions. Creating an overall robust

solution requires ensuring each of the subcomponents of the

framework is robust and for machine learning components,

robustness is tightly coupled with the composition of the

training data set. We believe that utilizing models which have

been explicitly trained to be robust to varying scene and

environmental characteristics is of key importance. Addition-

ally, using analytic autonomy components in place of end-to-

end learning components can mitigate issues associated with

the lack of a robust training data set. Further, such analytic

algorithms can often be explicitly redesigned by the engineer

to inherently increase robustness and cautiousness.

Overall, employing both machine learning based and tradi-

tional analytic solutions for autonomy allow for reaping the

benefits of both approaches. Machine learning components

offer significant increases in representational power and gen-

eralization capability which undoubtedly improves the overall

autonomy solution; however, it is beneficial to exploit analytic

components, when possible, to reduce the complexity of the

task we assign the machine learning components to learn.

III. DESIGN OF MARCONI-ROSENBLATT FRAMEWORK

FOR INTELLIGENT AUTONOMOUS UAV (MR-IFLY)

We now describe in detail the subcomponents of MR-iFLY

and discuss their relationships as outlined in Figure 1.

The input into our architecture includes an RGB image

collected from an FPV camera onboard the drone, and IMU

readings used within the planning module. The collected RGB

image is passed into two submodules: the disparity estimation

module and the depth tracking module, producing, a dense

estimate of image disparity and a sparse estimate of metric

depth, respectively. Within the disparity module, machine

learning based convolutional neural network (CNN) and visual

transformer models predict disparity values for each pixel in

the RGB input, where the disparity is defined as the pixel



distance between the same observed scene location in the

right and left images of a stereo pair. The disparity module

thereby obtains an estimate of values often gathered using

a stereo camera system, further providing an advantage over

other autonomy solutions by reducing the sensor requirements

of our architecture. Within the depth tracking module, classical

computer vision methods are used to estimate a sparse metric

depth map which is subsequently used to scale the dense

disparity map producing a dense metric depth map.

This metric depth map is transformed into a point cloud us-

ing the camera’s intrinsic characteristics and is then discretized

and binned to produce the 3D occupancy grid containing

binary obstacle labels. Finally, the 3D occupancy grid is passed

into the planning module which outputs a sequence of UAS ac-

tions to perform in the environment. In the present architecture,

we have implemented the analytic path planning algorithm

based on the Fast-Marching Method (FMM) which solves for

shortest time paths given a cost function. A baseline cost

function considers obstacles as locations with infinite cost but

more complex functions accounting for other environmental

factors may be used at no further computational cost.

RGB
Depth 

Tracking 

Module

Disparity 

Estimation 

Module
Disparity

Metric 

Depth

Scaled 

Disparity 

(Depth)

Point 

Cloud
3D 

Occupancy 

Grid Planning Module 

(Fast Marching 

Method (FMM))

Environment 

Actions

IMU

Fig. 1: MR-iFLY System Diagram

A. Depth Estimation

Estimating the depth of objects and obstacles in the en-

vironment surrounding the UAS is a crucial step in any

motion or path planning algorithm. In traditional autonomy

frameworks, this step often leverages dedicated depth sensors,

such as 3D LiDAR, or utilizes a stereo camera system, from

which, estimates of the metric depth can be obtained. In our

framework, we employ a combination of classical computer

vision and novel deep learning techniques, as described below,

to estimate metric depth from monocular RGB images.

1) Machine learning based depth estimation: The first step

MR-iFLY takes toward ascertaining metric depth - the raw

distance values from a scene point to the camera lens -

is to use a disparity estimation neural network. Disparity

estimation networks have recently grown in popularity as the

scale-invariant properties of disparity allow for networks to

be trained on larger data sets whilst constraining the range of

output values the network is required to learn. Accordingly,

disparity estimation networks are often more robust to changes

in scene and zero-shot transfer scenarios, as evidenced in [5].

Despite their desirable zero-shot and robust estimation prop-

erties, network architectures such as those proposed in [6] [7]

are often prohibitively large for embedded device deployment,

requiring substantive inference times, even on a GPU-equipped

embedded device. To reduce inference times, there exist two

primary avenues outside of increasing compute resources:

model size reduction and platform-specific optimizations. To

reduce the size of our depth estimation model, we leverage the

knowledge distillation techniques proposed in [8]. Knowledge

distillation is the process of training a smaller, student network

to learn the function represented by a larger, teacher network

via a semi-supervised learning scheme. To implement this

scheme, we curated a data set of real-world images represent-

ing the expected distribution of scenery that our UAS solution

will encounter, and supplemented this data set with images

selected from the OpenImages [9] and COCO [10] data sets.

The final data set consisted of 42,159 self-collected images,

371,159 images from OpenImages, and 75,880 images from

COCO. In our knowledge distillation pipeline, we used the

MiDaS network developed in [6] as the teacher network. For

the student architecture, we employed the same architecture

from [8]. The student network output was then regressed to

match the output of the MiDaS network on our curated dataset.

Finally, we were able to achieve a 2X inference time speedup

by converting our pretrained student network into the Tensor

RT framework offered by NVIDIA. The final model runs at

an average inference time of 25ms when no other processes

are running on the board.

2) Classical depth estimation: As noted before, the outputs

of the MiDaS network, and our trained student network,

contain estimates of disparity rather than metric depth. Since

disparity is equal to metric depth up to shift and scale,

obtaining metric depth amounts to obtaining the shift and scale

parameters which transform disparity to depth. In MR-iFLY,

we employ classical triangulation and re-projection algorithms

based on intrinsic properties of the UAS’s onboard camera to

estimate the shift and scale parameters.

Estimating the shift and scale parameters first requires

sparse estimates of metric depth obtained by treating con-

secutive frames in the UAS’s camera stream as a pseudo-

stereo system. We use ORB feature matching algorithms [11]

implemented in OpenCV to ascertain matching key-point lo-

cations in consecutively captured frames and use Lowe’s ratio

test to remove poor quality matches. The top n = 16 matches

are used in triangulation and re-projection error minimization.

The triangulation is done in homogeneous coordinates; given

a feature location p = [xl ,yl ,1] in the first image and its

matching location in the second image p′ = [xr,yr,1], we wish

to ascertain the scene point observed through these pixels,

P = [x,y,z]. We construct the matrix:

A =









xlM3 −M1

ylM3 −M2

xrM
′
3 −M′

1

yrM
′
3 −M′

2









(1)

where M,M′ are the camera matrices with both intrinsic and



extrinsic parameters for the “left” and “right” images, respec-

tively. The expressions for the above matrix A are generated

by enforcing epipolar geometric constraints on the scene point

P [12]. The triangulation for the scene point P is done by

solving AP = 0 for P using singular value decomposition

(SVD). The above method provides an initial solution for

the depth of the scene point, which is further refined by

minimizing the re-projection error of the computed P. This

is done by solving the following minimization problem:

minimize
P̂

‖MP̂− p‖2 +‖M′P̂− p′‖2 (2)

In our implementation, the solution for P̂ is obtained using the

Trust Region Reflective algorithm for non-linear least squares.

We employ the soft-L1 loss function:

loss(x) = 2(
√

1+ x−1) (3)

for its robustness to outlier values. The final depth value

obtained from the re-projection error minimization problem

is subsequently used in the scale parameter estimation. Each

of the depth values for the n selected scene points is obtained

using the above methods. Predicted disparity values are then

scaled separately for each estimated depth and the average

over scaled disparities is taken as the metric depth map.

To ascertain the minimum depth in the scene, we use the

pixel location of the minimum predicted disparity and find the

corresponding pixel location of the minimum disparity scene

point in the ”right” image using a sliding normalized 2-norm

distance filter, selecting the pixel location in the ”right” image

that yields the minimum filter distance. These pixel locations

from the ”left” and ”right” images are then used in the

triangulation and re-projection error minimization procedures.

Once the estimated minimum depth is obtained, we add it

to the scaled disparity map to obtain the final estimated

metric depth. In practice, the minimum and maximum depths

obtained via the described estimation procedures can still be

quite noisy due to camera sensor and pose sensor errors.

Accordingly, we maintain a windowed average of the most

recent 6 estimations for these values rather than using the

direct estimate at each frame.

B. Occupancy Grid

Once the metric depth map has been estimated, an occu-

pancy grid is generated for use in the planning module. The

depth map is converted into a point cloud by projecting the 1-

dimensional depth values into 3 dimensions using the camera’s

intrinsic parameters. After the point cloud is constructed,

points within a predetermined local vicinity of the agent are

added to the occupancy grid by setting a binary flag to denote

the presence of an object. The occupancy grid is the collection

of these flags and is represented by a binary array. Grid

resolution and radius are pre-set algorithmic parameters.

C. Planning Module

The occupancy grid is used in the planning module to

generate the UAS actions. In MR-iFLY, we use the Fast-

Marching Method (FMM) [13] planning algorithm to obtain

action sequences. The FMM planner is based on physical

models of wavefront propagation and is able to solve high-

dimensional planning problems efficiently. To generate a plan,

we set a local goal to serve as a destination point. This local

goal may be provided by a separate autonomy component, a

user or operator, or it may be set statically prior to execution

of the UAS autonomy program. If the local goal is outside the

radius of the occupancy grid we project the goal point into the

occupancy grid. The FMM planner is then used to compute

the shortest distance from each point in the occupancy grid to

the goal location. The actions along the shortest distance path

from the UAS to the goal are recorded.

In our implementation, we commit three actions along the

shortest path in each planning cycle. After action execution,

a new depth map is obtained and the planning module is run

again. Lastly, we pad the occupancy grid with an extra binary

flag around each of the obstacle points to restrict the planning

of a path that maneuvers the UAS too closely to an obstacle.

IV. EXPERIMENTAL EVALUATION AND DEMONSTRATION

In this section, we describe the physical implementation and

evaluation of MR-iFLY. Due to the nature of the tasks and

problems that each subcomponent is employed for, some of

the evaluation criteria are both qualitative and quantitative.

In either case, we substantiate the validity of the evaluation

criteria and subsequent analysis of results.

A. Hardware Implementation

To demonstrate the real-world applicability of our proposed

framework, we implement and demonstrate the autonomy

solution on two separate hardware platforms, depicted in

Figure 2.

The first platform, the Bitcraze Crazyflie 2.1 drone, features

a lightweight frame measuring 9 cm by 9 cm, a 27-gram

unloaded weight, and the ability to attach expansion modules

called decks. We equip the Crazyflie with the Flow-v2 deck

which provides a relative positioning system and a first-person

view (FPV) camera. A 3D printed mount was designed to hold

the FPV camera to the drone. Connection to the Crazyflie

is achieved via the Crazyradio module. Bitcraze provides a

python API to connect to the Crazyflie and perform both low-

and high-level controls.

The second platform, the NXP KIT-HGDRONEK66

quadrotor kit, includes a carbon fiber frame, the Flight Man-

agement Unit (FMU), RC receiver, RC transmitter, power

module, power distribution board, Electronic Speed Con-

trollers (ESCs), motors, GPS, FMU debug adapter, and pro-

pellers. Additionally, the frame contains rails for attaching

sensors in a standard mount format. A telemetry radio is added

to the platform and the NXP is equipped with the ArduCam

High Quality Camera. This sensor is a 12.3 MP camera that

supports frame rates of 1920 x 1080 at 60 fps and 4032 x

3040 at 30 fps. The selected version of the camera is the

“mini” version that uses has a smaller camera board and lens

suitable for use on a UAS.



Fig. 2: NXP (left) and Crazyflie (right) UAS

platforms used for demonstrating the pro-

posed autonomy framework.
Fig. 3: Examples of disparity estimation (bottom) from RGB (top) and

qualitative evaluation features.

To run our algorithms, we utilize both the NVIDIA Jetson

Nano and Jetson Xavier embedded GPU development boards.

For the Crazyflie platform, algorithmics and actions are com-

puted on the board and sent over a wireless link to be executed

on the UAS. For the NXP UAS, we attached the embedded

GPU boards to the UAS’ frame via custom mounts. In Table I,

we provide technical specifications of the embedded devices.

TABLE I: Computational performance specification compari-

son between NVIDIA Jetson Nano and NVIDIA Jetson Xavier

Spec. Nano Xavier

CPU Cores (#) 4 6
RAM (GB) 4 8

AI Performance 472 (GigaFlops/s) 21 (TensorOps/s)
GPU Cores (#) 128 384, 48 Tensor Cores

B. Disparity Estimation

The task of disparity estimation has straightforward evalua-

tion criteria in the case when ground truth disparity maps are

available. A suitable regression metric, such as mean squared

error or mean absolute error, may be used to characterize

how well the estimation model fits the disparity data. While

this approach to evaluation is theoretically sound, it is often

the case that ground truth disparity is not available for the

deployment platform, sensors, and environment in real-world

implementation scenarios. Accordingly, there exist two options

for evaluating the efficacy of the disparity estimation model

for a specific real-world task: collect ground truth disparity

maps and evaluate the model in the usual way, or manually

inspect the output of the model and qualitatively evaluate the

model’s efficacy. The former may often be infeasible if the

appropriate sensors are not available or deployable on the

target deployment platform. For these reasons, we now discuss

how we qualitatively evaluated disparity estimation models.

Perhaps the most important qualitative evaluation charac-

teristics of a disparity estimation model are object continuity,

relative consistency, and robustness to interference. For object

continuity, we inspect images to ensure that the disparity

assigned to pixels that represent the same object do not jump

wildly over many values, and further, that jumps do occur at

object boundaries. This is displayed in the rightmost image

of Figure 3. The arrow indicates the location of the human

in the disparity output and it can be seen that the disparity

values assigned to the pixels associated with the human are

continuous. Furthermore, the human’s boundaries are seen

clearly in the disparity output. For relative consistency, we

mean that the relative ordering of disparity values assigned to

different objects in the scene obeys the depth ordering that

we would expect from manual observation. This is clearly

observed in the leftmost image in Figure 3 with the bracket

showing how disparity values decrease for each of the further

trees in the scene. Lastly, illumination interference can greatly

affect the veracity of the disparity estimation module. For this

reason, we desire a model which is robust to such interference.

In Figure 3, it can be observed that the disparity model’s output

is robust to illumination interference in the areas enclosed by

the ellipses. The model’s output is robust to both the bright

light from the sun and the shadow from the tree.

C. Runtimes

While disparity estimation accuracy is important, it is per-

haps equally as important that the model’s inference does

not incur prohibitive latency. In this section, we report the

inference times of the disparity estimation model at various

points throughout the model reduction and optimization pro-

cess. These inference times are recorded in Table II.

TABLE II: Inference times on the NVIDIA Jetson Xavier.

Large MiDaS Py. Mobile PyDnet Py. (#) Mobile PyDnet TRT

386ms 55ms 25ms

The large MiDaS Py. model is the open-source model

proposed in [5] without any reduction or optimization. The

Mobile PyDnet Py. employs the model architecture proposed

in [8] trained on our own procured data set. This model is the

knowledge distillation of the large MiDaS model without any

optimizations, running in Python. The Mobile PyDnet TRT

model is the final model employed in our framework. It is

generated by using the TensorRT hardware-specific optimiza-

tion framework to optimize the Mobile PyDnet network. As



is observed in Table II, the model reduction and optimization

techniques employed in our work lead to 15X speedups in

model inference, allowing for real-time operation of MR-iFLY.

D. Flight Test

Fig. 4: Still frames from the flight test demonstration video.

Each frame contains: RGB observation (top left of frame),

depth estimation (bottom left of frame), occupancy map (right

side of frame, green) and the motion planner’s output (red).

To test the efficacy of the overall solution, we have run

demonstration flight tests on basic navigation and collision

avoidance tasks. The tasks consist of flying to a goal location

behind either a single stack or multiple stacks of boxes. A

video of the successful demonstration involving two stacks of

boxes provides insight into the inner workings of our frame-

work and is provided at the link in [14]. Figure 4 depicts still

frames from videos of demonstrations involving two stacks

of boxes. In each frame, there exist three panels displaying

the RGB observation (top left), depth estimation (bottom

left), and the constructed occupancy map (right side). The

2D occupancy maps in the video represent UAS-level slices

from the constructed 3D occupancy grid. Accordingly, they

may be readily interpreted as a birds-eye view of the UAS’

representation of the environment where the UAS is located in

the center of the bottom of the grid. Additionally, the panels on

the right side of the frames include the computed paths through

the environment towards the goal beyond the boxes. These

paths are denoted by the red pixels in the map portion of the

frame and provide insight into how the autonomy framework

makes decisions about avoiding collisions. These successful

flight tests substantiate our lightweight framework as a viable

solution to UAS autonomy.

V. RELATED WORK

Due to the multi-faceted nature of the presented work, there

exists a multitude of related literature. In this section, we focus

on reviewing literature from two divisions of the field. First,

we discuss algorithmically relevant works, often coming from

the visual simultaneous localization and mapping (VSLAM)

community. Secondly, we discuss works focusing on actual

hardware implementations of UAS autonomy.

Simultaneous localization and mapping (SLAM) is the task

of estimating an autonomous robot’s position in the world

whilst constructing a map representation of the world in which

it is operating. While MR-iFLY is not strictly a SLAM solution

- our goal is not to construct a globally consistent map of

the environment - many of the autonomy components overlap

with the components employed in SLAM solutions. This is

especially true in Visual-SLAM solutions, where the primary

sensors employed to solve the SLAM task are RGB cameras.

For these reasons, we cover V-SLAM works with similar

components in this subsection.

One of the most popular V-SLAM algorithms is that of

ORB-SLAM [15], which employs a feature-based key-point

selection algorithm for use in constructing a triangulation

system to discern pose and perform environment mapping. The

major difference between MR-iFLY and the components of

ORB-SLAM is that we aim to produce dense depth maps with

the aid of a machine learning-based depth estimation module

(which utilizes a very sparse triangulation method) while

ORB-SLAM performs sparse depth estimation without the use

of any machine learning. In recent work, LIFT-SLAM [16],

machine learning based feature detection is used to compute

key-point locations that are passed into the V-SLAM pipeline.

The authors of [16] demonstrate improved results on test data

sets and provide a solution that is a hybrid between machine

learning and traditional autonomy components. Therefore, the

design concepts of MR-iFLY and [16] are similar in nature.

Active neural V-SLAM [17] employs a similar design. The

authors propose a machine learning and traditional autonomy

hybrid architecture to perform active SLAM - controlling a

UAS with the specific intent of constructing a map of the

environment. Their work employs a similar depth estimation

and planning module, however; they only consider a 2-

dimensional internal environment representation rather than

the 3-dimensional representation in our work. Lastly, each of

these works differs from ours in that they are only evaluated

on a static data set or in simulation, rather than actually

implemented on hardware which is a daunting task.

Works with UAS hardware implementations are also abun-

dant. In [18], the authors introduce a UAS autonomy frame-

work for drone racing that employs both machine learning

based and traditional analytic autonomy algorithms. The au-

thors train a vision system to recognize gates and output the

location of the desired goal based on gate location. In their

follow-up work [19], the authors improve upon their solution

by training the vision system completely in simulation to

avoid the necessity of collecting large real-world data sets.

They show the success of their zero-shot sim-to-real transfer

technique in a real-world drone racing setup on an in-house

quadcopter. While these works are similar to ours in design

philosophy - both works employ a combination of machine



learning and analytic autonomy - there are fundamental dif-

ferences that separate our framework. First, in our work, we

focus on robust collision avoidance rather than on optimizing

trajectories through gates. Accordingly, the real-world exper-

iments conducted by the authors of [19] are set up in an

open environment, free of obstacles. Secondly, our work builds

an internal representation of the environment via occupancy

grid construction, which may be extensible to autonomy tasks

beyond collision avoidance, such as exploration, semantic

question answering, etc. In [19], only trajectories are computed

without constructing a world representation.

In [20], the authors introduce a machine learning based col-

lision avoidance system for small UAS. The proposed frame-

work utilizes optical flow input to track dynamic obstacles

through the environment and subsequently avoid collisions.

The authors test their methods on a commercial UAS with

commercial vision sensors and demonstrate that the UAS

successfully avoids a ball thrown toward the hovering UAS.

These experiments differ from ours in that they explicitly

consider non-stationary obstacles with a stationary UAS. In

our work, we focus on achieving UAS movement whilst

avoiding collisions with stationary obstacles.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented our novel, modular solution

to UAS autonomy, entitled MR-iFLY, which leverages tech-

niques from both machine-learning and traditional autonomy

algorithms. We have described, in detail, the workings of

the algorithmic components of MR-iFLY and have elucidated

how each component interacts with one another. We have

described the various evaluation criteria we have used to

measure performance and shown how our optimized machine

vision components are robust to environmental factors and

provide up to 15X speedup over the original model. Further,

we have provided a demonstration video highlighting a suc-

cessful flight test on a UAS with an embedded GPU board.

These empirical results, along with our design philosophy,

meet and mitigate the demands of vision-based autonomous

UAS problems associated with various industrial applications.

Accordingly, we believe that MR-iFLY may be leveraged

by 6G communications swarms to reduce communication

overhead between nodes by providing standalone collision

avoidance and navigation capabilities.

In future work, we plan to extend MR-iFLY in various

ways. First, we expect to add a further machine learning

component that computes the directive local goals that the

present framework will use in planning and navigation. This

component is expected to be learned via a reinforcement

learning scheme, in which a policy would be learned to output

a sequence of waypoints, which together, achieve some over-

arching mission goal. In addition, we wish to investigate the

use of probabilistic planners in the motion planning module.

In our current implementation, the FMM planner assumes that

obstacles and objects in the planning grid are static, and thus

the computed plan may only be valid for a short time over

which the static obstacle assumption is reasonable. Lastly,

we wish to employ MR-iFLY in a swarm mission, and test

to see if each of the UAS in the swarm can avoid each

other without the need for communication, thereby further

substantiating MR-iFLY as a potential solution for autonomy

in 6G communications swarms.

REFERENCES

[1] J. Jagannath, A. Jagannath, S. Furman, and T. Gwin, Deep Learning

and Reinforcement Learning for Autonomous Unmanned Aerial Systems:

Roadmap for Theory to Deployment, pp. 25–82. Cham: Springer
International Publishing, 2021.

[2] H. Cheng, L. Bertizzolo, S. D’Oro, J. Buczek, T. Melodia, and E. S.
Bentley, “Learning to Fly: A Distributed Deep Reinforcement Learning
Framework for Software-Defined UAV Network Control,” IEEE Open

Journal of the Communications Society, pp. 1–1, 2021.
[3] L. Bertizzolo, T. X. Tran, J. Buczek, B. Balasubramanian, R. Jana,

Y. Zhou, and T. Melodia, “Streaming from the air: Enabling high data-
rate 5g cellular links for drone streaming applications,” 2021.

[4] J. Buczek, L. Bertizzolo, S. Basagni, and T. Melodia, “What is a wireless
uav?,” Proceedings of the 15th ACM Workshop on Wireless Network

Testbeds, Experimental evaluation & CHaracterization, Oct 2021.
[5] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “To-

wards robust monocular depth estimation: Mixing datasets for zero-shot
cross-dataset transfer,” IEEE Trans. on Pattern Analysis and Machine

Intelligence (TPAMI), 2020.
[6] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense

prediction,” ArXiv preprint, 2021.
[7] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular

depth estimation with left-right consistency,” in CVPR, 2017.
[8] F. Aleotti, G. Zaccaroni, L. Bartolomei, M. Poggi, F. Tosi, and S. Mattoc-

cia, “Real-time single image depth perception in the wild with handheld
devices,” Sensors, vol. 21, 2021.

[9] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-
Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and
V. Ferrari, “The open images dataset v4: Unified image classification,
object detection, and visual relationship detection at scale,” IJCV, 2020.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, eds.), (Cham), pp. 740–755, Springer
International Publishing, 2014.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in International Conference on Computer

Vision, pp. 2564–2571, 2011.
[12] K. Hata and S. Savarese, “Cs231a course notes 4: Stereo systems and

structure from motion.”
[13] J. A. Sethian, “A fast marching level set method for monotonically

advancing fronts,” Proceedings of the National Academy of Sciences,
vol. 93, no. 4, p. 1591–1595, 1996.

[14] “Flight test demonstration video.” https://youtu.be/YT0-OyYEbNg.
[15] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and

J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Trans. on Robotics, pp. 1–17,
2021.

[16] H. M. S. Bruno and E. L. Colombini, “Lift-slam: a deep-learning feature-
based monocular visual slam method,” Neurocomputing, vol. 455,
pp. 97–110, 2021.

[17] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning to explore using active neural slam,” in International Confer-

ence on Learning Representations (ICLR), 2020.
[18] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun,

and S. Davide, “Deep drone racing: Learning agile flight in dynamic
environments,” Conference on Robot Learning, pp. 133–145, 2018.

[19] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and
S. Davide, “Deep drone racing: From simulation to reality with domain
randomization,” IEEE Trans. on Robotics, pp. 1–14, 2019.

[20] D. Pedro, J. P. Matos-Carvalho, J. M. Fonseca, and A. Mora, “Collision
avoidance on unmanned aerial vehicles using neural network pipelines
and flow clustering techniques,” Remote Sensing, vol. 13, 2021.


