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Abstract—Wireless signal recognition is becoming increasingly
more significant for spectrum monitoring, spectrum management,
and secure communications. Consequently, it will become a key
enabler with the emerging fifth-generation (5G) and beyond 5G
communications, Internet of Things networks, among others.
State-of-the-art studies in wireless signal recognition have only
focused on a single task which in many cases is insufficient
information for a system to act on. In this work, for the first time
in the wireless communication domain, we exploit the potential
of deep neural networks in conjunction with multi-task learning
(MTL) framework to simultaneously learn modulation and signal
classification tasks. The proposed MTL architecture benefits from
the mutual relation between the two tasks in improving the
classification accuracy as well as the learning efficiency with
a lightweight neural network model. Additionally, we consider
the problem of heterogeneous wireless signals such as radar
and communication signals in the electromagnetic spectrum.
Accordingly, we have shown how the proposed MTL model
outperforms several state-of-the-art single-task learning classi-
fiers while maintaining a lighter architecture and performing
two signal characterization tasks simultaneously. Finally, we
also release the only known open heterogeneous wireless signals
dataset that comprises of radar and communication signals with
multiple labels.

Index Terms—machine learning, multi-task learning, signal
classification, modulation classification

I. INTRODUCTION

Wireless signal recognition plays a vital role in the modern

era of wireless communication where heterogeneous wireless

entities belonging to civilian, commercial, government, and

military applications share the electromagnetic spectrum. Re-

cent years have witnessed an explosive growth of Internet of

Things (IoT) devices in critical applications such as smart

healthcare, smart industry, smart cities, smart homes, smart

vehicles, among others [1]. The diverse and large scale IoT de-

ployment leads to critical security vulnerabilities in addition to

spectrum scarcity. Wireless signal recognition is an emerging

technique to identify and mitigate the security weaknesses as

well as enable cooperative spectrum sharing to maximize spec-

trum utility. Signal recognition can be defined as the process
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of extracting the signal descriptors (modulation, signal type,

hardware intrinsic features, etc.,) to characterize the radio fre-

quency (RF) waveform. Spectrum sharing to improve spectrum

utilization serves as a key enabler for fifth-generation (5G)

and beyond 5G (B5G) communications whereby the various

emitters in the vicinity are sensed and identified to allocate and

utilize spectrum in a cooperative manner. Realizing the need

for improved spectrum sharing to sustain communications,

the Federal Communications Commission (FCC) has allocated

Citizens Broadband Radio Service (CBRS) in the 3.5 GHz

radio band. The CBRS band will be cooperatively shared

between commercial and government agencies such that only

150 MHz is utilized at a time. This is facilitated by sensing and

distinguishing between naval radar and commercial cellular

communication systems such that the incumbent naval radar

and satellite emissions are not hindered. Additionally, in the

tactical front, the wireless signal identification will enhance the

spectrum situational awareness allowing soldiers to distinguish

between friendly and hostile forces in the battlefield.

Signal recognition is a widely studied topic, however, it has

been segmented into subtasks such as modulation recognition

[2]–[8], signal type (wireless technology) classification [9],

etc., and studied independently. Furthermore, most of the re-

cent works in this realm focuses either on common communi-

cation waveforms [2]–[4], [6] or radar signals [10]. In a tactical

setting as well as in the current scenario of spectrum sharing

between government and commercial entities, radar as well as

communication waveforms are required to coexist. Therefore,

it is essential to consider both categories of waveforms in

the signal recognition problem. Additionally, it is important to

design a framework that can perform multiple tasks simulta-

neously to provide more comprehensive information regarding

the signal. Consequently, in this work, we propose to jointly

model the wireless signal recognition problem in a novel

parallel multi-task setting for radar as well as communication

waveforms.

II. RELATED WORKS

Machine learning is becoming a key enabler for several

aspects of wireless communication and radio frequency (RF)

signal analysis. One of the most common tasks of wire-

less signal recognition is automatic modulation classification

whereby the modulation type of the RF waveform is predicted



by the receiver. The modulation classification performance of

convolutional neural networks (CNNs) on eight modulation

types was studied in [2]. The authors adopted GoogLeNet

and AlexNet CNN architectures utilizing constellation images

as input. However, the employed architectures demonstrated

increased reliance on the image preprocessing factors such

as image resolution, cropping size, selected area, etc., and

achieved an accuracy below 80% at 0 dB signal-to-noise ratio

(SNR). In [3], a feature-based modulation classification with

feed-forward neural networks was proposed and demonstrated

on USRP software-defined radios with 98% accuracy for seven

modulation classes. Radar waveform recognition on seven

classes with a CNN architecture was investigated in [10]. The

radar recognition involved feeding time-frequency images to

the network in contrast to raw inphase-quadrature (IQ) sam-

ples. Single-task modulation classification with CNN on seven

classes was studied in [6]. The model utilizes cyclic spectrum

images as input and was shown to achieve a modulation clas-

sification accuracy of 95% above 2 dB. These approaches use

transformed representation or handcrafted features which limit

the generalization capability of neural networks in extracting

hidden representations from raw IQ signal samples.

The work by [11] used IQ samples as input to study the per-

formance of a CNN architecture with four convolutional, two

pooling, and two dense layers in classifying 11 modulations

while achieving an accuracy of 83.4% at 18 dB. A modified

ResNet architecture is adopted in [4] to perform single-

task modulation classification on 24 modulation formats. The

network achieves a classification accuracy of 95.6% at 10

dB. A multi-task learning (MTL) framework for modulation

recognition is proposed in [12] for communication waveforms.

They segment a single modulation classification task into

subtasks. Hence, their proposed model do not perform multiple

tasks simultaneously. These approaches perform a single-task

modulation classification on communication waveforms alone.

However, our proposed MTL model performs both modulation

and signal classification on communication as well as radar

waveforms to represent heterogeneous environment. In addi-

tion, our proposed MTL architecture achieves a modulation

classification accuracy of over 99% above 4 dB on the noise

impaired waveforms.

Another subtask of wireless signal recognition is signal clas-

sification whereby the wireless technology/standards adopted

to generate the RF waveform is accurately identified. Wireless

interference detection with a CNN architecture were stud-

ied by [13]. Three wireless standards namely; IEEE 802.11

b/g, IEEE 802.15.4, and IEEE 802.15.1 occupying different

frequency channels were classified into 15 different classes

with the highest accuracy attained for IEEE 802.15.1. Wireless

technology identification with a CNN architecture to mitigate

spectrum crunch in the industrial, scientific, and medical (ISM)

band was proposed in [14]. Wireless standards such as Zigbee,

WiFi, Bluetooth, and their cross-interference representing het-

erogeneous operation comprising a total of seven classes were

classified but required operation in high SNR regime to portray

93% accuracy. Here again, these works considered single-task

signal classification on communication waveforms. In contrast,

our work considers both modulation and signal classification

tasks on communication and radar waveforms impaired with

more dynamic and realistic effects.

Deep learning has made significant strides in the field of

computer vision [15], [16], natural language processing [17],

speech recognition [18], autonomous control [19], [20] etc.

The comparatively slower pace of applied deep learning in

wireless communication in contrast to other domains can be

in part attributed to the lack of available large scale datasets for

the diverse wireless communication problems. In this work, we

consider a novel MTL model to simultaneously perform two

tasks for signal recognition. To mitigate the lack of available

datasets in the wireless domain and to encourage advances

in this area, we release the radar and communication signal

dataset developed in this work for open use.

Contributions To the best of our knowledge, our work is the

first in the deep learning for wireless communication domain

that introduces MTL to solve challenging multiple waveform

characterization tasks simultaneously. Unlike the prior works

in wireless signal recognition, we propose to jointly model

modulation and signal classification as parallel subtasks in an

MTL setting. Further, MTL architecture inherently generalizes

better with more number of tasks since the model learns

shared representation that captures all tasks. Hence, in the

future, additional signal classification or regression tasks can

be included in the architecture. The novel MTL architecture

performs both modulation and signal classifications with over

99% accuracy above 4 dB on the noise impaired waveforms.

We present an elaborate study on the various hyperparameter

settings and their effects on the training and classification

performances to arrive at a lighter MTL architecture. The

proposed MTL architecture is contrasted with several of its

single-task learning (STL) counterparts in the literature to

depict the MTL advantage in learning parallel tasks with the

lighter model. Finally, to motivate future research in this do-

main, we release the first-of-its-kind radar and communication

waveforms dataset with multiple labels for public use [21].

III. WIRELESS MULTI-TASK LEARNING

Wireless RF signals can take multiple modulation formats.

For example: IEEE802.11a OFDM waveform can possess

binary phase-shift keying (BPSK), quadrature phase-shift key-

ing (QPSK), and quadrature amplitude modulation (QAM)

modulations. Similarly, satellite communication signals can

have M-ary phase-shift keying (PSK) modulations. Several

radar signals namely; Airborne-detection, Airborne-range, Air-

Ground-MTI, and Ground mapping adopt pulsed continuous

wave (PCW) modulation but differ in the transmission pa-

rameters such as pulse repetition rate, pulse width, and carrier

frequency. Finally, AM radio signals can carry either amplitude

modulated double side-band (AM-DSB) or amplitude mod-

ulated single side-band (AM-SSB) waveforms. Hence, it is

essential to not merely identify the modulation format but also

the signal type to accurately recognize the waveform.



Multi-task learning (MTL) is a neural network paradigm for

inductive knowledge transfer which improves generalization

by learning shared representation between related tasks. MTL

improves learning efficiency and prediction accuracy on each

task in contrast to training an STL model for each task

[22]. MTL has been applied to natural language processing

(NLP) and computer vision extensively. Unlike NLP and

computer vision, MTL has never been applied in the wireless

communication realm to the best of our knowledge. In this

work, however, we propose to take advantage of the mu-

tual relation between tasks in learning them with an MTL

architecture. We adopt a hard parameter shared MTL model

[23] where the hidden layers among all tasks are shared

while preserving certain task-specific layers. Hard parameter

sharing significantly reduces the risk of overfitting by the

order of the number of tasks as shown by [24]. As the

model learns more tasks, it extracts shared representation that

captures all of the tasks thereby improving the generalization

capability of the model. Including additional tasks to the model

will, therefore, improve the learning efficiency of the model.

Modulation and signal classification are related tasks that can

benefit from each other with the hard parameter MTL model.

Further, such an architecture has the added advantage to benefit

from additional tasks motivating the possibility to include

future signal characterization tasks. Given an input signal, the

proposed MTL model will classify the signal as belonging

to a specific modulation and signal class. The modulation and

signal classification tasks are optimized with categorical cross-

entropy losses denoted by Lm and Ls respectively. The overall

multi-task loss (Lmtl) function is represented as a weighted

sum of losses over the two tasks as in equation (1).

Lmtl(θsh, θm, θs) = wmLm(θsh, θm) + wsLs(θsh, θs) (1)

Here, the joint multi-task loss is parameterized by the shared

(θsh) as well as task-specific (θm, θs) parameters. The weights

over the task-specific losses are denoted by wm and ws. The

MTL training is denoted as the optimization in equation (2).

θ∗ = argmin
θsh,θm,θs

Lmtl(θsh, θm, θs) (2)

The MTL optimization aims to tune the network parameters

such as to minimize the overall task loss.

MTL Network Architecture: The hard parameter shared

MTL architecture for wireless signal recognition is shown in

Fig. 1. The shared hidden layers are composed of convolu-

tional and max-pooling layers. Each task-specific branch com-

prises of convolutional, fully-connected, and output softmax

classification layers. The convolutional and fully-connected

layers in the network adopt ReLU activation function.

The hyperparameters such as number of neurons per layer,

number of layers, task loss weights, etc., and their effects on

the training performance and classification accuracies were

studied in-depth as elaborated in the upcoming sections. We

train the network with Adam gradient descent solver for 30

epochs with a patience of 5. The learning rate is set to 0.001.

The architecture adopts batch normalization prior to ReLU

Softmax

Softmax

Signal Classification Task

Modulation Classification Task

Shared Layers

Fig. 1: MTL architecture for wireless signal recognition

activation. The dropout rate of the shared layer is set to 0.25

and that of the task-specific branches are set to 0.25 and 0.5

in the convolutional and fully-connected layers respectively.

Unless otherwise stated all the kernel sizes in the convolutional

layers are 3× 3 and the max-pooling size is 2× 2. The signal

and modulation classification task branches perform softmax

classification on 11 signal and 9 modulation classes for the

noise impaired waveforms (RadComAWGN). We implement

our models in Keras with Tensorflow backend on an Ubuntu

18.04 VM running on an Intel Core i5-3230M CPU.

IV. PROPOSED MODEL DESIGN AND ANALYSIS

Dataset and Evaluation Setting: As ours is the first work

in this realm that proposes an MTL architecture for wireless

signal recognition, there are no preexisting datasets that could

be leveraged with labels for multiple tasks. Hence, we generate

our datasets of radar and communication signals in GNU

Radio companion for varying SNRs. We generate 2 datasets

with modeled propagation effects - RadComAWGN and Rad-

ComDynamic at sample rate of 10 MS/s. RadComAWGN

comprises a total of 9 modulation and 11 signal classes. The

modulation classes are PCW, frequency modulated continuous

wave (FMCW), BPSK, AM-DSB, AM-SSB, amplitude shift

keying (ASK), Gaussian frequency-shift keying (GFSK), direct

sequence spread spectrum complementary code keying (DSSS-

CCK), and direct sequence spread spectrum Offset Quadrature

Phase-Shift Keying (DSSS-OQPSK). The signal classes are

Airborne-detection, Airborne-range, Air-Ground-MTI, Ground

mapping, Radar-Altimeter, Satcom, AM Radio, Short-Range,

Bluetooth, IEEE802.11bg, and IEEE802.15.4. Of which the

first 5 are radar waveforms and the remaining are communica-

tion waveforms. The last 3 signal classes are extracted from the

interference dataset [25]. Except the last 3, all the waveforms

are generated in GNU Radio with additive white Gaussian

noise (AWGN) under varying SNR levels (-20 dB to 18 dB

in steps of 2 dB). The RadComDynamic dataset contains all

waveforms in RadComAWGN except the 3 waveforms from

the interference dataset. The waveforms in the RadComDy-

namic dataset are subject to propagation effects and hardware

uncertainties such as multipath, fading, scattering, doppler



TABLE I: RadComDynamic: Dynamic settings

Dynamic Parameters Value

Carrier frequency offset std. dev/sample 0.05 Hz

Maximum carrier frequency offset 250 Hz

Sample rate offset std. dev/sample 0.05 Hz

Maximum sample rate offset 60 Hz

Num. of sinusoids in freq. selective fading 5

Maximum doppler frequency 2 Hz

Rician K-factor 3

Fractional sample delays comprising power delay profile
(PDP)

[0.2, 0.3, 0.1]

Number of multipath taps 5

List of magnitudes corresponding to each delay in PDP [1, 0.5, 0.5]

effects, oscillator drift, and sampling clock offset as shown

in Table I. The propagation channel is chosen to be Rician

with K-factor 3. The dataset is partitioned into 70% training,

20% validation, and 10% testing sets. The hyper-parameter

evaluations were performed with the RadComAWGN dataset.

To benefit future research in MTL on RF signal analysis, we

make the dataset publicly available [21].

A. Wireless Signal Representation

Let us denote the generated signal vector as x
id where the

superscript id represents the signal key used to extract the

signal from the database. The generated signals are complex

(IQ) samples of length 128 samples each. The signals are

normalized to unit energy prior to storing them in the dataset to

remove any residual artifacts from the simulated propagation

effects. Data normalization allows a neural network to learn the

optimal parameters quickly thereby improving the convergence

properties. The normalized data containing both I and Q

samples can be denoted as x̂
id = x̂

id
I + jx̂id

Q . Since neural

networks can only deal with real numbers, we will vectorize

the complex number as below x̂
id

f{x̂id} =

[

x̂
id
I

x̂
id
Q

]

∈ R
256×1 (3)

Mathematically, this can be shown with the relation

f : C128×1 −→ R
256×1 (4)

The 256-sample input signal is reshaped to a 2D tensor

of size 16 × 16 prior to feeding into the network.

The waveforms are stored as key-value pairs in the

HDF5 database such that the value can be extracted

using the key. The waveform key is denoted by id =
modulation format, signal class, SNR, sample number

which matches it to the corresponding waveform in the

database.

B. Effect of Task Weights

In this subsection, we will study the effect of task-specific

loss weights on the classification accuracy of both tasks.

Specifically, the classifier accuracy on both tasks when the

signal strength is very low (SNR= −2 dB) will be analyzed.
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Fig. 2: Effect of task loss weight distribution on modulation

and signal classification tasks at very low SNR (−2 dB)

Detection of even the weakest power signal corresponds to

improved detection sensitivity.

Figure 2 shows the classification accuracy of MTL on both

tasks at a very low SNR of −2 dB for varying weights. The

number of kernels in the shared and task-specific convolutional

layers are 8 and 4 respectively and the number of neurons in

the fully-connected layers of the task-specific branches is 256.

The weight distribution for both tasks are varied from 0 to 1 in

steps of 0.1 such that sum of weights is unity. The boundaries

of the plot denote classification accuracies when the model

was trained on individual tasks, i.e., when weights of either

task losses were set to zero. It can be seen that the model

performs almost stable across the weighting (0.1 to 0.9 on

either task). Although for some optimal weighting of ws = 0.8
and wm = 0.2, both tasks are performing slightly better than

at other task weights. We therefore fix the loss weights for

both tasks at ws = 0.8 and wm = 0.2 for the proposed MTL

architecture.

C. Effect of Network Density

How dense should the network be ? This is the question

we are trying to answer in this section. Resource constrained

radio platforms require lightweight neural network models

for implementation on field programmable gate arrays and

application-specific integrated circuits. For such realistic im-

plementations, dense neural network models for signal charac-

terization such as the resource-heavy AlexNet and GoogLeNet

adopted by [2] would seem impractical. Hence, rather than

adopting dense computer vision models, we handcraft the

MTL architecture to arrive at a lighter model. The network

density has a direct effect on the learning efficiency and

classification accuracy of the model. We will vary the number

of neurons in the MTL model introduced in Fig. 1 and analyze

the effect of introducing additional layers in the shared as well

as task-specific branches.

The legends in the figures (Figure 3 - Figure 6) represent

the varying number of neurons as well as layers in the

network. The notation (Csh, Cm, Fm, Cs, Fs) implies neuron
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Fig. 3: MTL training performance on modulation classification

task for varying network density
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Fig. 4: MTL training performance on signal classification task

for varying network density

distribution with Csh, Cm, Cs representing the number of

filters in the convolutional layer of shared, modulation, and

signal branches and Fm, Fs denote the number of neurons

in the fully-connected layers in the modulation and signal

branches. The additional layer inclusion notations are C2−sh

and C2−sh− tasks. The notation C2−sh denotes the MTL

architecture with two convolutional layers each followed by

a max-pooling layer in the shared module. The number of

filters in the convolutional layers of the shared module is

8. Finally, C2 − sh − tasks denote the MTL model with

shared module architecture the same as C2− sh but with two

sequential convolutional layers in the task-specific branches.

The number of filters in the convolutional layers of both task-

specific branches is 4. The number of neurons in the fully-

connected layers of task-specific branches is 256 for both

C2− sh and C2− sh− tasks.

Figure 3 and Figure 4 show the training performance of

the MTL model with respect to the two tasks. The training

plots demonstrate that increasing the network density slows

the training speed of the model. This is intuitive as the net-

work parameters increase training time increases. The fastest

network training time is achieved with the model configuration

of (8, 4, 256, 4, 256) which is the lightest of all configurations.

Figure 5 and Figure 6 demonstrate the classification accuracies

on both tasks for varying network density under increasing

SNR levels (decreasing noise power). It can be seen that the

additional layers in the shared (C2−sh) and shared as well as

task-specific branches (C2−sh−tasks) does not improve the

classification accuracies but rather results in significantly poor

modulation and signal classification accuracies. Further, the
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levels on modulation task for varying network density
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MTL model does not seem to benefit from the remaining dense

configurations. Hence, the MTL model will use the lighter

configuration of (8, 4, 256, 4, 256) that yields better learning

efficiency and prediction accuracies.

V. FINE-TUNED MODEL PERFORMANCE EVALUATION

In this section, we demonstrate the performance of the fine-

tuned MTL model on RadComAWGN and RadComDynamic

datasets for varying noise levels. With these tests, we are

aiming to assess the MTL performance on waveforms impaired

by just AWGN as well as waveforms affected by realis-

tic propagation and radio hardware impairments (previously

discussed in Table I). We adopted transfer learning on the

RadComDynamic experiments by initializing the weights of

the network to the tuned weights of MTL with RadCo-

mAWGN while the weights were randomly initialized for

RadComAWGN tests. The MTL exhibits a 98.58% modulation

classification accuracy on RadComAWGN and 97.07% on

RadComDynamic dataset at 2 dB. The signal classification

accuracy of MTL at 2 dB yielded 97.87% and 90.86% on

RadComAWGN and RadComDynamic datasets respectively.

We show that the proposed MTL model yields above 90%

accuracy at SNRs above 2 dB for both tasks with noise

impaired (RadComAWGN) as well as propagation and hard-

ware impaired (RadComDynamic) waveforms. The confusion

matrices of the signal and modulation classes at 10 dB on

RadComAWGN and RadComDynamic datasets along with

their classification accuracy at varying noise levels are shown

in Fig. 7. These experiments demonstrate the classification

capability of the proposed lightweight MTL model on severely

impaired waveforms under varying signal powers.



TABLE II: Comparison of proposed MTL with other STL models

Model Modulation Classification

Accuracy

Signal Classification

Accuracy

Number of Classes Waveform Type

Modulation and Signal classification (this work) - Multi-task

Proposed MTL Model 97.87% at 0 dB,
99.53% at 10 dB

92.3% at 0 dB,
99.53% at 10 dB

9 modulation,
11 signal classes

Radar and
Communication

Modulation classification only methods - Single Task

Peng et al. 2019 [2] below 80% at 0 dB - 8 Communication

Jagannath et al. 2018 [3] 98% above 25 dB - 7 Communication

O’Shea et al. 2018 [4] 95.6% at 10 dB - 24 Communication

Mossad et al. 2019 [12] 86.97% at 18 dB - 10 Communication

Hermawan et al. 2020 [11] ∼80% at 0 dB,
83.4% at 18 dB

- 11 Communication

Wang et al. 2017 [10] 100% at 0 dB - 7 Radar

Li et al. 2018 [6] 95% above 2 dB - 7 Communication

Signal classification only methods - Single Task

Bitar et al. 2017 [14] - 91% at 15-25 dB,
93% at 30 dB

7 Communication

Schmidt et al. 2017 [13] - 95% at -5 dB 15 Communication
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(c) RadComDynamic: Signal classification
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(d) RadComAWGN: Signal classification
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(e) Fine-tuned MTL classification performance under varying SNR

Fig. 7: Fine-tuned MTL confusion matrices on both tasks at SNR= 10 dB (a-d) & Performance under varying SNR (e)



In Table II, we compare the proposed MTL model with other

state-of-the-art methods in both the tasks. The classification

accuracies of the proposed MTL model are with the RadCo-

mAWGN noise impaired waveforms. Our framework is the

first method that accomplishes both tasks with a single model.

It is to be noted that in the current literature, to best of our

knowledge, there does not exist an MTL model or a multi-task

labelled dataset for modulation and signal recognition. We

would require either of these to perform a one-to-one compar-

ison. Nonetheless, we provide a tabular comparison to show

the proposed MTL model achieves the same or better accuracy

as compared to state-of-the-art STL models. This proves the

utility and effectiveness of using a single MTL model in the

RF domain. The single-task modulation classifier proposed in

[10] which achieves a 100% accuracy at 0 dB is with fewer

classes and utilizes handcrafted input features which limits

the generalization capability. In contrast, our model adopts a

significantly lighter CNN model to achieve two simultaneous

tasks on more number of classes. Additionally, raw IQ samples

in our model allow capturing hidden representations improving

generalization capability. Overall, the proposed lightweight

model has provided reliable performance over several varying

scenarios outperforming most state-of-the-art STL models.

VI. CONCLUSION AND FUTURE WORK

We proposed a multi-task learning framework to solve two

challenging and fundamental wireless signal recognition tasks

- modulation and signal classification. We leveraged the rela-

tion between the two tasks in allowing the MTL to learn the

shared representation. The classification accuracy and learning

efficiency of the two tasks were experimentally demonstrated

with the novel lightweight MTL architecture motivating its

adoption in resource-constrained embedded radio platforms.

The performance of the model was depicted for noise impaired

as well as propagation and hardware impaired waveforms.

To benefit future research utilizing MTL for wireless com-

munication, we publicly release our dataset. The success of

the proposed MTL architecture further opens the door to

include more signal characterization tasks such as bandwidth

regression, sampling rate regression, pulse width regression,

emitter classification, etc., to the model. The inclusion of

additional signal characterization tasks will be part of our

future research along with generating more waveforms to be

included to the dataset for training multi-task frameworks.
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