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Future communication networks must address the scarce spectrum to accommodate extensive growth
of heterogeneous wireless devices. Efforts are underway to address spectrum coexistence, enhance
spectrum awareness, and bolster authentication schemes. Wireless signal recognition is becoming
increasingly more significant for spectrum monitoring, spectrum management, secure communications,
among others. Consequently, comprehensive spectrum awareness on the edge has the potential to
serve as a key enabler for the emerging beyond 5G (fifth generation) networks. State-of-the-art
studies in this domain have (i) only focused on a single task – modulation or signal (protocol)
classification – which in many cases is insufficient information for a system to act on, (ii) consider
either radar or communication waveforms (homogeneous waveform category), and (iii) does not
address edge deployment during neural network design phase. In this work, for the first time in
the wireless communication domain, we exploit the potential of deep neural networks based multi-
task learning (MTL) framework to simultaneously learn modulation and signal classification tasks
while considering heterogeneous wireless signals such as radar and communication waveforms in
the electromagnetic spectrum. The proposed MTL architecture benefits from the mutual relation
between the two tasks in improving the classification accuracy as well as the learning efficiency with
a lightweight neural network model. We additionally include experimental evaluations of the model
with over-the-air collected samples and demonstrate first-hand insight on model compression along
with deep learning pipeline for deployment on resource-constrained edge devices. We demonstrate
significant computational, memory, and accuracy improvement of the proposed model over two
reference architectures. In addition to modeling a lightweight MTL model suitable for resource-
constrained embedded radio platforms, we provide a comprehensive heterogeneous wireless signals
dataset for public use.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Spectrum sensing for comprehensive situational awareness
ill play an essential role in Beyond 5G (5th Generation) net-
orks. Some of the direct applications include promoting coexis-
ence in the unlicensed spectrum bands, automatic signal recog-
ition for advanced physical layer security, intrusion detection,
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among others. The need for an advanced wireless signal recogni-
tion system in the present and forthcoming age of wireless com-
munication where heterogeneous and dense wireless devices of
civilian, commercial, military, and/or government domains share
and contest for the scarce spectrum is critical. The Internet of
Things (IoT) adoption and deployment scale is forecasted to grow
at an unprecedented rate. To this end, the requirements of future
communication networks are already set to support at least 10×
the device density (device/km2) of 5G [1] to sustain diverse
application domains — smart grid, smart city, holographic tele-
conferencing, industrial automation, etc. Such dense deployment
is often accompanied by a plethora of security vulnerabilities ow-
ing to the various exposed threat surfaces. An automated signal
recognition scheme for coordinated spectrum sharing, physical
layer authentication, intruder detection, etc., is indispensable for
secure communications in the Beyond 5G (B5G) networks.
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Signal recognition involves extracting waveform descriptors
uch as the wireless standard (protocol), modulation format,
nd/or hardware intrinsic signatures, among others. Cooperative
r coordinated spectrum sharing involves a preliminary signal
ensing and identification process to distinguish the authorized,
nauthorized, and rogue emitters in the vicinity contesting for the
carce spectrum. For instance, the coexistence of 5G New Radio
nlicensed (NR-U) devices with incumbents in the unlicensed
pectrum is an actively studied topic by the industry as well as a
tudy item in the 3GPP Release-17 working group [2,3]. Another
nstance is the spectrum sharing in the 150 MHz of Citizens
roadband Radio Service (CBRS) in the 3.5 GHz radio band [4].
Signal recognition is composed of subtasks such as modulation

ecognition [5,6], wireless standard (protocol) determination [7],
F fingerprinting [8], etc. However, tackling these subtasks as a
oint problem could benefit from the similarities shared across
hese tasks. State-of-the-art in this realm has focused on studying
hese subtasks independently and only considers either common
ommunication waveforms [9–12] or radar signals [13]. Recently,
owever, since spectrum sharing between incumbents and/or
uthorized/unlicensed devices is gaining momentum, considering
eterogeneous waveform families – radar and/or communication
aveforms – would be essential. To this end, we extend our
revious work [14] to design and comprehensively evaluate the
ireless signal recognition problem with subtasks – modulation
nd wireless standard recognition – jointly in a multitask setting
or radar as well as communication waveforms using synthetic
nd over-the-air (OTA) datasets. Further, most of the existing
orks [9,11,12,15,16] focus on designing a deep neural network to
ccomplish the task at hand, be it modulation or protocol classifi-
ation, without considering the deployment platform capabilities.
e claim that such a design methodology which overlooks the

arget platform capabilities or are built under the assumption
f a powerful computational unit for model deployment limits
he IoT spectrum awareness capabilities as required by future
ommunication standards. Therefore, in this work, we also put
orth a suitable deep learning pipeline with special emphasis on
esource-constrained edge deployment.

To the best of our knowledge, our proposed MTL model is
he first in the deep learning for wireless communication do-
ain that introduces MTL to solve challenging multiple waveform
haracterization tasks simultaneously. Further, MTL architecture
nherently generalizes better with more number of tasks since the
odel learns shared representation that captures all tasks. Hence,
dditional signal classification or regression tasks can be included
n the model without significantly diminishing its performance. In
rder to elucidate the overall contributions of this extended work,
e enlist the key differences of this version from our preliminary
ork [14].

• In this extended version, we have revised and elaborated the
Related Works (Section 2) to better illustrate the evolution
of modulation classification and the need for MTL from an
edge deployment perspective. In this work, we demonstrate
the significant computational gain and lesser memory re-
quirement with the MTL architecture in contrast to other
reference architectures.
• We walk through and elaborate the MTL design ethos which

considers edge deployment from its design inception. We
present a comprehensive insight into the design methodol-
ogy with insight on the computational requirements, model
convergence, and accuracy in Section 5.3.
• To explicitly enable the reader to better understand the

benefits of MTL, we have clearly enlisted it in Section 3 as

well as introduces the training procedure for MTL.

2

Fig. 1. Evolution of AMC approaches.

• In this extended version, we have included waveform visu-
alizations from the OTA collection for better comprehension.
Additionally, the challenging OTA collected dataset (Rad-
ComOta) is made available to benefit the wider research
community [17]. The dataset collection presents an in-the-
wild OTA scenario with other unavoidable emitters in the
vicinity. Such a unique combination of radar and commu-
nication waveform dataset annotated to suit multiple tasks
are not available to date. We would like to emphasize here
that the dataset can be utilized for two single tasks as well
— modulation and wireless standard recognition separately.
• Further, we demonstrate the performance of the deduced

lightweight MTL model on an experimental OTA testbed
and exhibit a 90% signal classification and 82.5% modula-
tion classification accuracy at very low signal powers. The
performance is contrasted with two benchmark models and
shown to outperform significantly in terms of computation,
accuracy, and memory. We also elaborate the OTA data
collection environment and demonstrate the received sig-
nal strengths to elucidate the experimental settings to the
reader specifically in Section 6.
• Finally, we present a deep learning pipeline which con-

siders model compression as a critical step for deploying
neural network-assisted spectrum awareness at the edge in
the beyond 5G communication networks. We have included
instructional firsthand information on performing model
compression. Accordingly, we demonstrate the model size
reduction (11.8×) by quantizing the MTL model with negli-
gible accuracy loss. This discussion is included in Section 7.

. Related works

Machine learning is becoming a key enabler for several aspects
f the next-generation (B5G) of wireless communication systems
nd RF signal analysis [1,5,7,18]. One of the most common tasks
f wireless signal recognition is automatic modulation classifica-
ion (AMC) whereby the modulation type of the RF waveform is
redicted by the receiver. AMC has now been studied over several
ears and has therefore evolved as the time has progressed. We
irst begin by looking at this evolution of AMC as depicted in
ig. 1.
Traditional Approaches: AMC was broadly divided into two

ategories; (i) feature based [19–22] and (ii) likelihood based
ethods [23–28]. While likelihood based approaches provide
ptimal performance in the Bayesian sense, they are often com-
utationally demanding and not suited for deployment at the
dge where most application for spectrum awareness lies [29,30].
n the other hand, feature based classifiers are computationally
fficient and can provide near optimal performance if designed
arefully. The requirement of being ‘‘carefully designed’’ is the key
aveat here. There has also been attempts to combine the benefits
f both in hybrid approaches [31]. It is often possible to design
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he classifier to work extremely well under certain assumption
n simulations or laboratory setting but fail when the operational
nvironment changes. In other words, it is important for the
lassifiers to generalize well to various operating scenarios.
Since the problem structure of feature based classifiers fits

xtremely well with the recently revitalized supervised machine
earning, it was inevitable for these techniques to be leveraged
or AMC. Therefore, in recent years, different machine learning
echniques have been employed to determine the modulation
ormat of the unknown signal via classification. During the ini-
ial stages of applying supervised learning for AMC, feature-
ngineered methodology was adopted as opposed to raw
nphase-quadrature (IQ) samples. This includes the use of support
ector machines (SVMs) [32] and ANNs [33–35]. In [33], the
uthors use a multilayer perceptron (MLP) to classify twelve dif-
erent modulation formats with high accuracy over a wide range
f signal-to-noise ratio (SNR) values. In [34], the authors use six
eatures and evaluate two different ANN architectures trained
y the backpropagation method using the standard gradient de-
cent (GD) learning algorithm. Similarly, in [35], eight modulation
chemes have been shown to be successfully classified with high
ccuracy in low SNR conditions. All these studies are limited
o simulations and not evaluated on actual hardware. In [30],
uthors described challenges while transitioning from simulation
o hardware implementation. Overall, due to the assumptions
nd unanticipated signal distortions that are overlooked during
imulations, OTA performance of AMC techniques may experience
egradation in real deployments. Therefore, valuing practical
elevance, we demonstrate the performance of the MTL model
ith OTA captured waveforms.
Neural network with expert-feature: The superior feature

xtraction capability of convolutional neural networks (CNNs)
s opposed to ANNs led to several works utilizing CNNs for
odulation or signal classification [9,11,12,15,16,36]. The authors
f [9] evaluated the performance of convolutional neural net-
orks (CNNs) in predicting modulation formats on a dataset com-
rising eight classes. Here, the authors adopted GoogLeNet [37]
nd AlexNet [38] architectures which were fed constellation im-
ges as input. However, the models exhibited sensitivity to image
reprocessing factors such as image resolution, cropping size,
elected area, etc., and achieved an accuracy below 80% at 0 dB
ignal-to-noise ratio (SNR). We claim here that this could be due
o employing architectures designed to tackle computer vision
roblems rather than for the RF application. A classification accu-
acy of 98% on seven modulations was demonstrated on a Univer-
al Serial Radio Peripheral (USRP) software-defined radio (SDR)
estbed with a feed-forward feature-based neural network [10]. A
even class radar waveform recognition with a CNN architecture
hat ingests time–frequency images was studied in [39]. A seven
lass modulation recognition accuracy of 95% at SNRs above 2 dB
as attained with a CNN utilizing cyclic spectrum images [36].
ll of these works rely on handcrafted features to train the neural
etwork which limits the generalization capability of the network
s it could have from raw IQ samples. Therefore, in this work we
esort to extracting spatial features from raw IQ samples instead
f hand-engineered feature sets.

eural network with raw (IQ or real-valued) samples:
In [40], the authors use 128 raw IQ samples (per example)

o classify 11 communication modulation schemes with a CNN
rchitecture referred to as VTCNN. The network was shown to
chieve a classification accuracy in the range of 70%–75% for sig-
als with 18 dB SNR. Similarly, in [41] 128 raw IQ samples were
tilized to classify 8 modulations with another CNN architecture
DRCNN) which achieved above 95% accuracy for signals exceed-
ng 2 dB. The authors use 2000 point real-valued samples in [42]

o classify 5 communication waveforms with a CNN architecture.

3

Although the model achieves a 100% accuracy it considers very
limited number of waveforms of the same carrier frequency and
bandwidth. In contrast, our work considers and captures a diverse
and comprehensive setting with respect to sampling rate, carrier
frequency, multipath propagation effects, among others which is
more representative of a realistic scenario. The authors of [12]
trained a CNN with 1024 raw IQ samples per input to classify 11
modulations and achieved an accuracy of 83.4% at 18 dB. In [11], a
modified ResNet architecture was trained to perform a 24 modu-
lation class predictions with 95.6% accuracy at 10 dB by learning
from raw IQ samples. Note here that these works are adopting
deeper architectures for singular task unlike the proposed MTL
model. A single modulation classification task for communica-
tion waveforms was further split into subtasks in a multi-task
learning (MTL) setting in [43]. However, it is performing only
a single waveform characterization task — modulation recogni-
tion. These works studied single task modulation classification
tasks on only communication waveforms. On the contrary, our
proposed MTL model can attain two waveform characterization
tasks – modulation and signal (protocol/standard) recognition –
on the radar as well as communication waveforms with a single
model. Further, in this work, we demonstrate the MTL model
performance with OTA captured waveforms and achieve a 82.5%
modulation accuracy and 90% signal classification accuracy at the
lowest transmission gain (0 dB).

Another subtask of wireless signal recognition is signal (wire-
less protocol) recognition which involves identifying the wireless
standard with which RF waveform is generated. The authors
of [15] studied wireless interference detection involving three
wireless standards – IEEE 802.11 b/g, IEEE 802.15.4, and IEEE
802.15.1 – occupying different frequency channels grouped into
15 different classes. In a similar sense, [16] adopted a CNN
architecture to address the spectrum crunch in the industrial,
scientific, and medical (ISM) band by identifying seven classes be-
longing to Zigbee, WiFi, Bluetooth, and their cross-interferences.
However, the model required operation in a high SNR regime for
a 93% accuracy on a singular task.

Dataset: Deep learning has made significant strides in the
field of computer vision [38,44], natural language processing [45],
speech recognition [46], etc. However, its application in the field
of wireless communication is still in its early stages. The recent
application of deep learning in wireless communication is starting
to witness rapid advancements in the field of wireless resource
allocation, modulation recognition, intelligent receiver designs,
etc., [18]. The comparatively slower pace of applied deep learning
in wireless communication in contrast to other domains can be in
part attributed to the lack of available large scale datasets for the
diverse wireless communication problems. It is well known that
datasets are the fuel on which machine learning thrives. In our
literature search [11,47–49], we have not yet come across any
dataset that has been curated for multi-task learning architec-
tures or that contains both communication and radar waveforms.
Therefore, in this effort, we had to generate elaborate datasets –
RadComAWGN, RadComDynamic, and RadComOta – comprising
communication and radar signals with appropriate annotations
that can be used for multi-task and single task approaches (mod-
ulation and signal classification separately). To benefit future
research in this field, the RadComDynamic and RadComOta have
been made public [17]. Consequently, this dataset can be availed
by the scientific community to study wireless modulation and
signal classification separately or jointly.

3. Wireless multi-task learning

Multi-task learning (MTL) is a neural network paradigm for
inductive knowledge transfer which improves generalization by
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earning shared representation between related tasks. MTL im-
roves learning efficiency and prediction accuracy on each task in
ontrast to training an STL model for each task [50]. MTL has been
pplied to natural language processing (NLP) and computer vision
xtensively. In [51], an MTL framework to jointly perform medical
amed entity recognition and normalization from medical liter-
ture was proposed. The parallel multi-task architecture is setup
o perform explicit feedback between tasks allowing conversion
f hierarchical tasks. Another NLP work [52] proposed an MTL
lassifier to perform sarcasm and sentiment classification. An MTL
pproach to perform parallel regression and classification tasks
n a monocular input image whereby the tasking weights are
earned is proposed in [53]. Another study in [54] considered
cene images from different resolutions as related tasks that could
e jointly learned with an MTL model.
Although MTL has been widely applied in NLP and computer

ision, its popularity in the wireless communication domain is
et to gain traction. To the best of our knowledge, this is the
irst work that applies MTL to jointly tackle waveform character-
zation tasks (i.e. automatic modulation classification and signal
lassification). We exploit the mutual relation between the tasks
n applying them to an MTL setting. Specifically, we adopt a hard-
arameter shared architecture [55] where there exists a shared
ranch (shares hidden layers with all tasks) and task-specific
ranches. It was shown in [56] the hard-parameter shared model
educes overfitting risk by the order of the number of tasks.
he model extracts a shared representation that captures all of
he tasks consequently improving the generalization capability.
herefore, the inclusion of more tasks will improve the model’s
earning efficiency. To this end, in this work, we consider two
elated waveform characterization tasks – modulation and signal
lassification – that can benefit from each other with the hard-
arameter shared model. We would like to articulate here the
enefits of MTL in contrast to training STL models per task:

(1) MTL solves a set of tasks jointly rather than independently
which in theory comes with benefits such as reduced train-
ing and inference times, increased data efficiency, and im-
proved prediction accuracy [57].

(2) Reduced computational and storage resources due to a
single MTL architecture as opposed to requiring multiple
architectures each of which is optimized for their own
individual tasks.

(3) Extensible architecture enables inclusion of related tasks
without significant restructuring. For instance, few related
tasks that can be included in the future are frequency es-
timation, emitter identification (RF fingerprint extraction),
etc. In other words, it is able to provide more actionable in-
formation regarding the spectrum of interest with a single
model.

(4) Synthesizes a generalized architecture that does not overfit
to a particular task. This can be attributed to the model’s
ability in learning shared representation. In other words,
if a particular task A has a feature set α that is related
to it in a complex manner, Learning α through A will be
challenging. On the other hand, this feature set α could be
related to another task B in a less complex manner allowing
the MTL model to learn the feature set through B. It can be
said that the shared branch of the MTL allows the model to
eavesdrop on the shared features of both tasks.

(5) It is known that wireless domain unlike computer vision
has only scarce data available for training neural networks.
MTL models are good at handling scarce data. For example,
consider two tasks A and B whereby one of the tasks say A
has lesser data than the other, training a STL for learning
task A would be difficult. However, MTL can handle such
uneven data distribution fairly well by allowing task A to
benefit from task B.
4

The proposed MTL model will classify the input waveform
as belonging to a particular modulation and signal class concur-
rently. Both classification tasks are optimized with categorical
cross-entropy losses denoted by ℓm and ℓs respectively. The joint
MTL loss (ℓmtl) function is represented as a weighted sum of losses
over the two tasks as in Eq. (1).

ℓmtl(Θsh, Θm, Θs) = wmℓm(Θsh, Θm)+ wsℓs(Θsh, Θs) (1)

ere, wm and ws denote the weights over the task specific losses
nd {Θsh, Θm, Θs} denote the learnable parameters of the shared
nd task-specific branches. The joint multi-task loss is parameter-
zed by the shared as well as task-specific parameters. The MTL
raining is denoted as the optimization in Eq. (2).
∗

sh, Θ∗m, Θ∗s = argmin
Θsh,Θm,Θs

ℓmtl(Θsh, Θm, Θs) (2)

he MTL optimization aims to tune the network parameters such
s to minimize the overall task loss as shown in Algorithm 1.
n this way, the model jointly learns to perform simultaneous
redictions at a time.

Algorithm 1 Backpropagation to train MTL model
Initialize network weights Θsh, Θm, Θs.
Initialize task weights wm and ws.
for epoch = 1 to MAX_EPOCHS do

for steps = 1 to STEPS do
Input batch x and Compute MTL joint loss
ℓmtl(Θsh, Θm, Θs) [standard forward pass]
Compute gradients ∇ℓmtl(Θsh, Θm, Θs)
Update weights
Θ∗sh, Θ∗m, Θ∗s ←− Θsh, Θm, Θs [standard backward
pass]

end for
Early stopping monitor to track model convergence -
Stop training once model stops learning (starts to di
verge)

end for

MTL Network Architecture: The hard parameter shared MTL
architecture for wireless signal recognition is shown in Fig. 2.
The shared hidden layers are composed of convolutional and
max-pooling layers. Each task-specific branch is comprised of
convolutional, fully connected, and output softmax classifica-
tion layers. The convolutional and fully-connected layers in the
network adopt ReLU activation function.

The hyper-parameters such as convolutional kernel sizes,
number of neurons in each layer, number of layers, task loss
weights, etc., and their effects on the training performance and
classification accuracies were studied in depth as elaborated in
the upcoming sections. We train the network with Adam [58]
gradient descent solver for 30 epochs with a patience of 5.
The learning rate is set to 0.001. The architecture adopts batch
normalization prior to ReLU activation. The dropout rate of shared
layer is set to 0.25 and that of the task-specific branches are set
to 0.25 and 0.5 in the convolutional and fully-connected layers
respectively. Unless otherwise stated all the kernel sizes in the
convolutional layers are 3 × 3 and max-pooling size is 2 × 2. We
pass the model output through a softmax layer and sample from
the resulting probability vector,

p(y|fΘi (x)) = Softmax(fΘi (x)) (3)

Here i indicates the corresponding task which could be modula-
tion or signal classification, x and fΘi (x) denote the model input
and output. We implement our models in Keras with Tensor-
Flow backend on an Ubuntu 18.04 VM running on an Intel Core
i5-3230M CPU.
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Fig. 2. MTL architecture for spectrum awareness.

Table 1
Modulation and corresponding signal (protocol) classes.
Modulation classes Signal classes

BPSK SATCOM
ASK Short-Range

AM-DSB
AM-SSB

AM Radio

GFSK Bluetooth
DSSS-CCK IEEE802.11bg
DSSS-OQPSK IEEE802.15.4
FMCW (Radar) Radar-Altimeter (Radar)

PCW (Radar) Airborne-detection (Radar)
Airborne-range (Radar)
Ground mapping (Radar)
Air-Ground-MTI (Radar)

Table 2
RadComDynamic: Dynamic settings.
Dynamic parameters Value

Carrier freq. offset std. dev/sample 0.05 Hz
Maximum carrier frequency offset 250 Hz
Sample rate offset std. dev/sample 0.05 Hz
Maximum sample rate offset 60 Hz
Num. of sinusoids in freq. selective fading 5
Maximum Doppler frequency 2 Hz
Rician K-factor 3
Fractional sample delays comprising
power delay profile (PDP)

[0.2, 0.3, 0.1]

Number of multipath taps 5
Magnitudes corresponding to each delay
in PDP

[1, 0.5, 0.5]

4. Dataset and signal preprocessing

Dataset and Evaluation Setting: As ours is the first work
n this realm that proposes an MTL architecture for wireless
ignal recognition, there are no preexisting datasets that could
e leveraged with labels for multiple tasks. Hence, we generate
ur datasets of radar and communication signals in GNU Radio
ompanion [59] for varying SNRs. We generate two simulated
atasets with modeled propagation and/or hardware effects —
adComAWGN and RadComDynamic. RadComAWGN comprises
n total of 9 modulation and 11 signal classes as shown in Ta-
le 1. Three signal classes (Bluetooth, IEEE802.11bg, IEEE802.15.4)
re extracted from the interference dataset [47]. The remain-
ng waveforms are generated in GNU Radio with additive white
aussian noise (AWGN) under varying SNR levels (−20 dB to
8 dB in steps of 2 dB) [60]. The SNR levels were applied to the
5

signal by setting the noise amplitude in the GNU Radio blocks
(noise_source for RadComAWGN and dynamic_channel_model for
RadComDynamic) as 10−SNR/10. The RadComDynamic dataset con-
tains all waveforms in RadComAWGN except the 3 waveforms
from the interference dataset. The waveforms in the RadCom-
Dynamic dataset are subject to propagation effects and hard-
ware uncertainties as shown in Table 2. All 9 distinct waveforms
belonging to the RadComDynamic dataset is shown in Fig. 3.
We divided each of our dataset into 70% training, 20% valida-
tion, and 10% testing sets. The hyper-parameter evaluations were
performed with the RadComAWGN dataset. All waveforms of
the RadComDynamic were also generated experimentally OTA to
derive RadComOta dataset. This is elaborated in Section 6. To
benefit future research in MTL on wireless signals, we make the
RadComDynamic and RadComOta datasets publicly available [17].

4.1. Wireless signal representation

The generated 128 sample complex (IQ) signal vector is de-
noted as yid where id indicates the key with which it is extracted
from the dataset container. The signals are normalized to unit
energy prior to storing them in the dataset to remove any residual
artifacts from the simulated environment. Data normalization
allows a neural network to learn the optimal parameters quickly
thereby improving the convergence properties. The normalized
data containing both I and Q samples can be denoted as ŷid =
ŷidI + jŷidQ . Since neural networks can only deal with real numbers,
we will vectorize the complex number as below ŷid

f {ŷid} =

[
ŷidI
ŷidQ

]
∈ R256×1 (4)

Mathematically, this can be shown with the relation

f : C128×1
−→ R256×1 (5)

If the first layer is a convolutional layer, the 256-sample input
signal is reshaped to a 2D tensor of size 16 × 16 prior to feeding
into the network. In the discussion herein, we fix the task loss
weights at ws = 0.8 and wm = 0.2. The empirical basis for this
determination can be referred in our previous work [14].

5. Neural network architecture

How dense should the network be? This is the question we are
trying to answer in this section. Resource constrained radio plat-
forms require lightweight neural network models for implemen-
tation on general purpose processors (GPPs), field programmable
gate arrays (FPGAs) and application-specific integrated circuits
(ASICs). For such realistic implementations, dense neural network
models for signal characterization such as the resource-heavy
AlexNet and GoogLeNet adopted by [9] would seem impracti-
cal. Hence, rather than adopting dense computer vision models,
we handcraft the MTL architecture to arrive at a lighter model.
Specifically, we are trying to design a small network which is yet big
enough to support as many classes corresponding to the tasks. It is
to be noted that the dataset used for the architecture analysis in
Sections 5.1 through 5.3 is the RadComAWGN.

5.1. Task weights

In this subsection, we will study the effect of task-specific loss
weights on the classification accuracy of both tasks. Specifically,
the classifier accuracy on both tasks when the signal strength
is very low (SNR= −2 dB) will be analyzed. Detection of even
the weakest power signal corresponds to improved detection

sensitivity.
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Fig. 4. Effect of task loss weight distribution on modulation and signal
lassification tasks at very low SNR (−2 dB).

Fig. 4 shows the classification accuracy of MTL on both tasks
t a very low SNR of −2 dB for varying weights. The number of
ernels in the shared and task-specific convolutional layers are
and 4 respectively and the number of neurons in the fully-

onnected layers of the task-specific branches is 256. The weight
istribution for both tasks are varied from 0 to 1 in steps of 0.1
uch that sum of weights is unity. The boundaries of the plot
enote classification accuracies when the model was trained on
ndividual tasks, i.e., when weights of either task losses were set
o zero. It can be seen that the model performs almost stable
cross the weighting (0.1 to 0.9 on either task). Although for
ome optimal weighting of ws = 0.8 and wm = 0.2, both tasks
re performing slightly better than at other task weights. We
 t

6

Fig. 5. MTL training performance on modulation classification task for varying
network density.

therefore fix the loss weights for both tasks at ws = 0.8 and
m = 0.2 for the proposed MTL architecture.

5.2. Number of layers, neurons

We will vary the number of neurons in the MTL model intro-
duced in Fig. 2 and analyze the effect of introducing additional
layers in the shared as well as task-specific branches.

The legends in the (Figs. 5–8) represent the varying num-
ber of neurons as well as layers in the network. The notation
(Csh, Cm, Fm, Cs, Fs) implies neuron distribution with Csh, Cm, Cs
epresenting the number of filters in the convolutional layer of
hared, modulation, and signal branches and Fm, Fs denote the
umber of neurons in the fully-connected layers in the modula-
ion and signal branches. The additional layer inclusion notations
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Fig. 6. MTL training performance on signal classification task for varying
network density.

Fig. 7. MTL classification performance under varying noise levels on modulation
task for varying network density.

Fig. 8. MTL classification performance under varying noise levels on signal task
or varying network density.

re C2− sh and C2− sh− tasks. The notation C2− sh denotes the
TL architecture with two convolutional layers each followed by
max-pooling layer in the shared trunk. The number of filters in
he convolutional layers of the shared trunk is 8. Finally, C2−sh−
asks denote the MTL model with shared branch composition the
ame as C2− sh but with two sequential convolutional layers in
the task-specific branches. The number of filters in the convolu-
tional layers of both task-specific branches is 4. The number of
neurons in the fully-connected layers of task-specific branches is
256 for both C2− sh and C2− sh− tasks.

Figs. 5 and 6 show the training performance of the MTL model
ith respect to the two tasks. The training plots demonstrate that

ncreasing the network density slows the training speed of the
odel. This is intuitive as the network parameters increase train-

ng time increases. The fastest network training time is achieved
ith the model configuration of (8, 4, 256, 4, 256) which is the

ightest of all configurations. Figs. 7 and 8 demonstrate the classi-
ication accuracy on both tasks for varying network density under
7

Fig. 9. MTL training performance on modulation classification task for varying
kernel size.

increasing SNR levels (decreasing noise power). It can be seen
that the additional layers in the shared (C2 − sh) and shared as
ell as task-specific branches (C2− sh− tasks) does not improve
he classification accuracy but rather results in significantly poor
odulation and signal classification accuracy. Further, the MTL
odel does not seem to benefit from the remaining dense config-
rations. Hence, the MTL model will use the lighter configuration
f (8, 4, 256, 4, 256) that yields better learning efficiency and
rediction accuracy.
In a nutshell, we empirically evaluated that the introduction

f additional layers in the shared and task-specific branches does
ot improve the classification accuracy but rather results in sig-
ificantly poorer modulation and signal classification accuracy.
ut of the various evaluated configurations, we determined 8
nd 4 convolutional kernels with 1 convolutional layer each in
he shared and task-specific branches respectively and 256 fully
onnected neurons in the single fully connected layer of both
ask branches notated in [14] as (8, 4, 256, 4, 256) yields better
learning efficiency and prediction accuracy.

5.3. Convolutional kernel size

The kernel sizes of convolutional filters influence the memory
and compute requirements, training, and classification perfor-
mances of the model. The number of parameters and computa-
tions scale with the kernel size as well as the number of kernels.
To understand this better, let us consider an example where the
input to the convolutional layer has dimensions 16 × 16 × 1
(considered in this paper). Let us suppose the convolutional ker-
nel has dimensions 7 × 7 × 1 with 8 kernels of input padding
size = 0 and stride = 1. This yields total number of learnable
parameters to be 7 × 7 × 1 × 8 = 392 and total number of
computations as 10 × 10 × 8 × 7 × 7 = 39 200. With the
ame number of kernels, stride, and padding size, a kernel size of
× 3 × 1 will result in 72 parameters and 14 112 computations.
his tells us a kernel size of 3 × 3 result in ∼5.4× lesser memory
nd ∼2.7× fewer computations.
In this evaluation, the convolutional kernel sizes in the shared

nd task-specific branches are increased from 3 × 3 to 7 × 7.
ecall here (from Section 5.2) that we use 8 kernels in the shared
ranch and 4 in both task-specific branches.
Figs. 9 and 10 depict the training speed of the model with

arying convolutional kernel sizes under varying noise levels. The
lots demonstrate faster training of the model with the smallest
ernel size of 3 × 3. From the classification accuracy point of
iew, Figs. 11 and 12 demonstrate no significant benefit from
mploying larger convolutional kernel sizes. Therefore, for the
onsidered number of classes corresponding to the tasks, we
hoose a memory and computation efficient design choice of
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Fig. 10. MTL training performance on signal classification task for varying kernel
ize.

Fig. 11. MTL classification performance under varying noise levels on
modulation task for varying kernel size.

Fig. 12. MTL classification performance under varying noise levels on signal task
or varying kernel size.

× 3× 1 kernel size in all branches of the MTL. The final deduced
MTL architecture following these in-depth evaluations are shown
in Fig. 13. Please note here that the ‘‘?’’ in the architecture
indicates the batch size for the model training.

5.4. Feature extraction

As stated in Section 4.1, the IQ vector yid is reshaped into a
squared tensor of dimension 16 × 16 × 1 in order to enable
the convolutional layer (conv2d denoted in Fig. 13) to perform
the spatial feature extraction. Consider an input feature map Fi ∈
RNi×Hi×Wi fed to a convolutional layer i where Ni, Hi ,Wi are the
number of input channels, height, and width of the input feature
8

map, respectively. Let the layer i contain Ni+1 convolutional ker-
nels of dimensions hk×wk×Wi corresponding to a total number of
learnable parameters of NihkwkWi. The convolutional layer maps
the input feature maps to output tensor Fi+1 ∈ RNi+1×Hi+1×Wi+1

hich serves as input for the next convolutional layer i + 1 by
he following transformation.

i+1(mp, nq) =
hk∑
p=1

wk∑
q=1

Wi∑
r=1

Ki(p, q, r)Fi(m, n) (6)

here the spatial location of the output are mp = m− p+ 1 and
q = n − q + 1 considering a unit stride without zero-padding.
n other words, each convolutional kernel in layer i of size hk ×

k ×Wi generates one feature map. The total number of floating
oint operations (FLOPs) of layer i is Ni+1Hi+1Wi+1hkwkWi. We
an see that the shared branch only has a single convolution layer
conv2d – followed by a pooling layer — max_pooling2d. The

onv2d layer has 8 kernels of size 3 × 3 × 1 generating a feature
ap of size 14 × 14 × 8 which is sub-sampled by the pooling

ayer of size 2 × 2 to 13 × 13 × 8. The FLOPs of the conv2d
ayer can be obtained as 14 × 14 × 8 × 3 × 3 × 1 = 14.112k.
dditionally, note here that we adopt batch normalization prior
o ReLU activation to reduce the variance across samples in a
atch [61]. We have empirically determined faster convergence
y adopting batch normalization.
The feature map of size 13 × 13 × 8 from the shared branch

s fed into the two task branches that possess a convolution layer
nd a fully connected layer each. The convolution layer in these
ask branches has 4 kernels of size 3 × 3 × 1 transforming the
3 × 13 × 8 feature map into 11 × 11 × 4 feature tensor.
flattening (vectorize) operation is performed as indicated by

latten in Fig. 13 to produce a 1D vector from the 3D tensor which
s fed to the fully connected layer (Dense) of 256 neurons. We
dopt dropout as regularization to stabilize the convergence of
he model. The final output layers of the two tasks are denoted
y dense_1 and dense_3 which performs softmax classification.

.5. Fine-tuned model performance

In this section, we evaluate the performance of the fine-tuned
TL model on both the datasets (RadComAWGN and RadComDy-
amic) under varying SNR. The objective of these experiments are
o evaluate MTL model on waveforms impaired by AWGN alone
nd waveforms impacted by realistic propagation and radio hard-
are impairments. Overall, the MTL exhibits a 99.53% modulation
lassification accuracy on RadComAWGN and 97.58% on RadCom-
ynamic dataset at 2 dB. The signal classification accuracy of
TL at 2 dB yielded 97.07% and 90.79% on RadComAWGN and
adComDynamic datasets respectively. We show that the pro-
osed MTL model yields above 90% accuracy at SNRs above 2 dB
or both tasks with RadComAWGN waveform (noise impaired)
nd RadComDynamic waveforms (propagation and hardware im-
aired). The confusion matrices of the signal and modulation
lasses at {−2, 0, 10} dB on the challenging RadComDynamic
ataset are depicted in Figs. 14 and 15 respectively. It can be
educed that at −2 dB three of the modulation classes have
bove 95% accuracy while the others except AMDSB have above
0% accuracy. As SNR increases to 0 dB, the accuracy of these
lasses further improves, with four modulation classes at >98%
ccuracy and the lowest accuracy being 65%. The signal classifi-
ation accuracy on the other hand had several misclassifications
lthough at lower rates when the SNR is −2 dB indicating the
omplexity of the signal classification task in contrast to the
odulation classification task. The misclassification drops as the
NR increases. Further, the top-1 classification accuracy of both
ignal and modulation classification on both datasets under vary-
ng SNRs are shown in Fig. 16. These experiments establish the
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Fig. 13. Deduced MTL architecture.

Fig. 14. Fine-tuned MTL modulation classification: Confusion matrices at −2 dB, 0 dB, and 10 dB with challenging RadComDynamic dataset.
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Table 3
Summary of related works.
Model Modulation

classification Acc.
Signal classification
Acc.

Number of
classes

Waveform
domain

Modulation and signal classification (this work) — Multi-task
Proposed MTL Model 97.87% at 0 dB,

99.53% at 10 dB
92.3% at 0 dB,
99.53% at 10 dB

9 modulation,
11 signal classes

Radar and
Communication

Modulation classification only methods — Single task
Oshea and West [40] ∼70%–75% at 18 dB – 11 modulation Communication

Wang, Liu, Yang, and Gui
[41]

>95% at > 2 dB – 8 modulation Communication

Peng et al. 2019 [9] below 80% at 0 dB – 8 modulation Communication

Jagannath et al. 2018 [10] 98% above 25 dB – 7 modulation Communication

O’Shea et al. 2018 [11] 95.6% at 10 dB – 24 modulation Communication

Mossad et al. 2019 [43] 86.97% at 18 dB – 10 modulation Communication

Hermawan et al. 2020 [12] ∼80% at 0 dB,
83.4% at 18 dB

– 11 modulation Communication

Wang et al. 2017 [39] 100% at 0 dB – 7 modulation Radar

Xu et al. [42] ∼100% at 0 dB – 5 modulation Communication

Li et al. 2018 [36] 95% above 2 dB – 7 modulation Communication

Signal classification only methods — Single task
Bitar et al. 2017 [16] – 91% at 15–25 dB,

93% at 30 dB
7 signal classes Communication

Schmidt et al. 2017 [15] – 95% at −5 dB 15 signal classes Communication
Fig. 15. Fine-tuned MTL signal classification: Confusion matrices at −2 dB, 0 dB, and 10 dB with RadComDynamic dataset.
Fig. 16. Fine-tuned MTL classification under varying SNR with RadComDynamic
dataset.

learning and classification capability of the novel lightweight
multi-task model on extremely impaired RF signals under varying
SNR.
10
As discussed earlier, the proposed MTL framework is the first
method that accomplishes both tasks with a single model. Since
multi-task RF datasets and/or architectures that could be lever-
aged to make one-on-one comparison is not present in literature,
in Table 3, we show that our model outperforms most single
task classifiers in either task. To be consistent with most of the
other datasets, the classification accuracy of the proposed MTL
model in the table are with the RadComAWGN noise impaired
waveforms. The single task modulation classifier proposed in [39]
which achieves a 100% accuracy at 0 dB is with fewer classes
and utilizing handcrafted input features. Additionally, raw IQ
samples allow the model to capture hidden representations and
allows additional waveform inclusion with ease without requir-
ing significant model retraining. The model in [42] achieves a
100% modulation classification accuracy at 0 dB. However, it
only classifies only 5 waveforms that are generated with the
same frequency and bandwidth while requiring a denser CNN
architecture. In contrast, even our noise impaired waveforms are
generated for varying carrier frequencies and bandwidth which
is more typical of the realistic setting. Overall, the proposed
lightweight model has provided reliable performance over several
varying scenarios outperforming most state-of-the-art single-task

techniques.
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Fig. 17. Experimental data collection setup using SDR.
. Over-the-air evaluation

.1. Over-the-air data collection

We evaluate the performance of the above designed MTL
odel under an indoor OTA settings — hardware and propagation
ffects. We use GNURadio to perform the transmission and IQ
ample reception using N210 one of the USRP family of SDRs by
everaging the Universal Hardware Driver (UHD) Source and File
ink blocks of GNURadio. The radios use VERT2450 antennas for
ransmission and reception. The receiver samples the incoming
Q samples at 10 MS/s at a center frequency of 2.45 GHz. Notice,
ere that we carry out the sample collection under a in-the-
ild indoor laboratory set up with several other interferences
specially from a cluster of WiFi and Bluetooth devices in the
icinity. The receiver gain is set to a constant 30 dB while the
ransmission gain is varied from 0 to 32 dB in steps of 4 dB
or each waveform. The minimum supported transmit gain of
he N210 radio is 0 dB. We note here that we do not use the
ML/YAML-based GNURadio Companion flowgraph for the data
ollection setup in Fig. 17, rather we use the Python library of
NURadio to avail certain signal processing blocks. Since the
aveforms which include radar and communication are not read-

ly available, these were custom written in Python to create the
aveform library and interfaced with USRP SDRs over the UHD
PI.
We collect all the waveforms belonging to the RadComDy-

amic dataset wirelessly. For each capture at a certain trans-
ission gain setting, we collect 1.28 million samples. The trans-
ission gain is varied to collect samples under varying signal
trengths. In order to benefit future research for practitioners
n this realm, we make this experimental OTA collection (Rad-
omOta) accessible for public use [17]. Due to the nature of
ollection in the presence of other unavoidable interferences as
n a real-world setting, this dataset is challenging and more
elevant (w.r.t realistic applications) compared to our previous
pen source dataset — RadComDynamic. The dataset has over 8
illion IQ samples amounting to the six modulation and eight
ignal classes at transmit gains 0 to 32 dB in steps of 4 dB
here each transmit gain setting for a specific waveform has 7k
xamples each of 128 IQ samples. To provide intuition as to how
ow the signal power is at 0 dB, we show the signal amplitudes
f Airborne Range and Ground mapping radars and compare it to
2 dB transmission in Fig. 18.

.2. Benchmark architectures

In order to evaluate and benchmark the proposed MTL model,
e adopt two reference architectures from the literature — VTCNN
40] and DRCNN [41]. These architectures ingest 128 complex IQ
amples as in the proposed MTL, thereby serving as a good means
o benchmark the performance using the same dataset. Recall
ere that there are no other existing MTL architectures for the
ireless signal recognition application to date. Hence, we modify
he output layer of the reference architectures to accommodate
ultiple tasks classification (see Fig. 19).
11
Fig. 18. Demonstrating signal amplitudes at different radio transmit gains of
Airborne Range and Ground Mapping radar waveforms as seen on the receiving
N210.

Table 4
Model accuracy at lowest radio transmit gain.
Model Modulation @ 0 dB Signal @ 0 dB

Proposed MTL model 82.4% 90.1%
VTCNN-MTL 80.14% 87.65%
DRCNN-MTL 77.5% 88.2%

6.3. MTL prediction with over-the-air data

In order to measure the performance with OTA captured
dataset, we partition the dataset similar to the synthetic case into
70% training, 20% validation, and 10% test. The fine-tuned MTL
architecture is then trained on the OTA dataset. We considered
data augmentation with Gaussian noise layer such that Gaussian
noise is added to each training sample, hence improving the
overall performance by preventing the network from learning
irrelevant features. We would like to state here that any neural
network is only as good as the data being fed. A neural network
tends to overfit when attempting to learn high frequency features
(patterns that occur more frequently). Zero mean Gaussian noise
has data points at all frequencies and thereby dampens the high
frequency features. In Keras, we achieve the noise induced data
augmentation by using GaussianNoise layer with configurable
standard deviation (0.1 in this evaluation). This layer is inserted
as the last layer in the shared branch. We note here that this layer
acts as a regularization layer and is only active during training.

With the above settings, we benchmarked the proposed MTL
model with the VTCNN-MTL and DRCNN-MTL. Figs. 20 and 21
demonstrate the classification accuracy of the models under vary-
ing signal strengths. Please note here that the indoor laboratory
restrictions constrained the radio separation causing the lowest
transmitter gain itself to be of detectable signal strength. In-
creasing the transmitter gain further increased the noise floor
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Fig. 19. Benchmark architectures.
hich saturated the frontend of the receiver causing the classifier
erformance to slightly drop at higher transmitter gains. This
rend is seen in all the three models that were evaluated with
he proposed model being better than the other two on the same
est data. Note here that the proposed MTL which was carefully
esigned to be lightweight in architecture since its inception
utperforms the other two models in both modulation and signal
lassification tasks as shown in Table 4. We note here that the
igher overall signal classification accuracy for all three models
an be attributed to the differences in the radar signals as shown
n Fig. 3. These evaluations at varying signal powers validates
he model performance in detecting and classifying even feeble
ignal (see Fig. 18) with its compact architecture. We emphasize
ere that the goal of this testbed evaluation was to demon-
trate the applicability of MTL in learning multiple related signal
haracterization tasks jointly.

.4. Computational and memory evaluation

Having validated the performance of the proposed MTL model
n terms of its top-1 classification accuracy in two simultaneous
asks — modulation and signal classification, we now evaluate the
roposed model in terms of its computational and storage met-
ics. We resort to the following performance metrics to evaluate
he computational and memory savings,
12
Fig. 20. Modulation classification accuracy under varying OTA signal gains.

(1) FLOPs - The number of floating point operations in the
model.

(2) Parameters - The number of trainable parameters in the
model.



A. Jagannath and J. Jagannath Physical Communication 54 (2022) 101793

m
t
p
r
t
i
V
t
R

7

d
t
d
p
t
a
s
s
e

t
n
b
n
v
m
i

Table 5
Computational and memory evaluation.
Model FLOPs (Million) Parameters (Million) CPU Inference time (ms) Memory (MB)

Proposed MTL model 0.506 0.253 8.4 3.2
VTCNN-MTL 5.662 2.83 113.3 34
DRCNN-MTL 2.03 1.01 70.5 12.2
Fig. 21. Signal classification accuracy under varying OTA signal gains.

(3) Memory - The storage space required by the model in
mega bytes (MB).

(4) Inference time - The time in seconds consumed by the
model to generate an output for one instance of the 128
complex IQ samples input.

Table 5 clearly demonstrates the significant computational and
emory savings of the proposed MTL model. The proposed archi-

ecture requires only 91.06% and ∼75% fewer FLOPs and trainable
arameters in contrast to the MTL versions of VTCNN and DRCNN
espectively. The lightweight MTL performs faster inferences at
he rate of 8.4 ms on an Intel Core i5-3230M CPU, consum-
ng 90.5% and 73.8% lesser memory requirement in contrast to
TCNN-MTL and DRCNN-MTL respectively. These evaluations fur-
her validate the applicability of the proposed MTL model for the
F edge applications.

. Compressed model — Quantized neural network

As one of the key motivations of this paper is to enable and
emonstrate the design of lightweight neural network architec-
ure for support on resource-constrained edge devices, we now
iscuss the prospects of model compression. The challenging
art of the MTL design process is the careful hyper-parameter
uning as discussed in Section 4 to maintain the classification
ccuracy across multiple tasks. In this section, we emphasize the
ignificance of model compression and present it as an important
tep to consider in the deep learning pipeline for resource-limited
dge platforms.
Fig. 22 shows the proposed deep learning pipeline whereby

he model is trained, validated, tested, and also undergoes a
ecessary step model compression and refining to arrive at a well
alanced compressed model. Although model compression tech-
iques have been explored and practiced heavily for computer
ision and NLP, their application in the wireless realm is rudi-
entary. Hence, we present this design methodology to provide

nterested readers valuable firsthand insight and demonstrate the
13
Fig. 22. Deep learning model training and deployment pipeline.

Fig. 23. MTL classification under varying noise.

performance of the compressed MTL model. We further empha-
size that the lack of information regarding the howto of model
compression or its effect on the crafted model from a wireless
communication standpoint acts as a barrier and thwarts active
research in this direction.

Deep learning models, in general, consume substantial com-
pute and memory resources [62], which can exhaust even pow-
erful servers let alone resource-constrained edge devices. Several
algorithms, software, and hardware have been proposed and im-
plemented to lighten the imposed burden on resources [62,63].
Among which, quantization is a promising approach. Quantization
is a reduced precision strategy whereby the weights and acti-
vations of the trained neural network is shrunk from higher to
lower bit precision. The standard number format in deep learning
is floating point 32 (FP32), specified in IEEE754 [64]. The FP32
representation is referred to as single precision. Similarly, the
format which use half the bits of FP32 is called half precision
(floating point 16). In this paper, we will quantize the MTL to
8 bit integer (INT8) reducing the memory footprint by a factor of
four [65,66]. This is a most used form of quantization whereby

a FP32 tensor F32 is represented by a INT8 tensor I8 along with
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uxiliary attributes — scale s and zero point z as in Eq. (7).

32 = s ∗ (I8 − z) (7)

In our empirical evaluations, we have found quantized model
consumes fewer memory and computing resources while keeping
its accuracy close to the unquantized model. Prior works adopting
INT8 quantization too have demonstrated this model accuracy
preservation [65,66]. Additionally, we chose INT8 quantization
partly due to the fact that the widely accepted computational
platforms such as ARM CPUs, Intel CPUs, and NVIDIA GPUs are
introducing low-level instructions set to support INT8 computa-
tion efficiently. Several deep learning frameworks are available
today — TensorFlow Lite, PyTorch, MXNet to perform model
quantization.

In this paper, we used the TensorFlow Lite framework [67]
since our model was implemented in Keras with TensorFlow
backend. TensorFlow Lite is part of the TensorFlow library and is
intended to support model deployment on mobile and IoT edge
devices. Quantization schemes can be broadly divided into two
categories — post-training quantization and quantization aware
training. Post-training quantization starts with a trained FP32
model and performs calibration on a cross-validation dataset to
find the best quantization parameters. On the other hand, quan-
tization aware training models quantization during training and
can provide higher accuracies in contrast to post-training quanti-
zation. For this reason, we chose the quantization aware training
method. Below, we summarize the steps required to attain an
INT8 quantized model leveraging the TensorFlow Lite framework,

(1) Train a FP32 model and fine tune without quantization
aware training. This is the FP32 finetuning discussed in the
previous sections.

(2) Apply quantization aware training to the whole model. For
this, use the keras.quantize_model function from the
tensorflow_model_optimization library. Compile the
model and train as usual in Keras. Let the trained model be
denoted as QatModel

(3) Next, we create a quantized model with INT8 weights by
loading the QatModel to the converter class as tf.lite.
TFLiteConverter.from_keras_model(QatModel).

(4) Specify the optimization policy for the converter class as
tf.lite.Optimize.DEFAULT which would quantize the
weights to 8-bits precision. Finally, the convert function
will generate the quantized model.

We state here that the FP32 model which in itself was hand-
crafted to be lighter in architecture had a model size of 2.97 MB.
The INT8 quantization yielded a 11.8× smaller model, i.e., of size
251.6 kB.

Fig. 23 shows the classification accuracy comparison of the
INT8 model with its unquantized FP32 counterpart on the Rad-
ComAWGN dataset. It can be seen that the INT8 quantization
resulted in almost no accuracy loss giving a 98.9% and 99.2% sig-
nal and modulation classification accuracy respectively at 10 dB
and over 98% accuracy (modulation and signal classification) at
0 dB and above. Recall here that the INT8 model is 11.8× smaller
than the FP32 model and performs as good while reducing the
memory and computational load.

With these evaluations, we would like to summarize that
the quantized MTL model which is only 251.6 kB can perform
two waveform characterization tasks while attaining a very high
accuracy for signals even at 0 dB.

8. Conclusion and future work

The key novelty of our paper lies in proposing a multi-task
learning framework for solving two challenging waveform char-
acterization tasks. The proposed framework lays special emphasis
14
on designing lighter architecture tailored for resource-limited IoT
platforms. We present a walkthrough of the lighter architec-
ture design methodology and demonstrated the applicability of
the MTL framework in performing related signal characterization
tasks jointly on synthetic as well as OTA dataset. Specifically, we
demonstrate that the proposed architecture requires only 91.06%
and ∼75% fewer FLOPs and trainable parameters in contrast to
the MTL versions of VTCNN and DRCNN respectively. The pro-
posed lightweight MTL performs faster inferences at the rate of
8.4 ms on an Intel Core i5-3230M CPU, consuming 90.5% and
73.8% lesser memory requirement in contrast to VTCNN-MTL and
DRCNN-MTL respectively.

Further, we present a deep learning pipeline tailored for be-
yond 5G IoT frameworks alongside a slice of neural network
quantization. The 11.8× compressed model was able to perform
as good as the unquantized counterpart with very negligible accu-
racy loss. We advocate the adoption of such MTL frameworks for
the future communication networks to ease resource-burden by
enabling a single model to perform multiple tasks. The feasibility
established by the proposed MTL architecture provided incentive
for the future efforts in this domain to extend the model to
include more tasks such as emitter classification, sampling rate
regression, bandwidth regression, among others. The inclusion of
additional signal characterization tasks will be part of our future
research. Finally, the RadComOta dataset comprising radar and
communication waveforms (collected under OTA setting) that can
be used for modulation and/or signal classification tasks has been
made publicly available to promote future research [17].

As part of our future research efforts, we hope to extend
the dataset further to include other signal types and character-
istics. Additionally, we intend to closely evaluate the effect of
various structured pruning approaches with an in-depth review
of saliency of each filter in the convolutional layer for efficient
hardware acceleration.
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