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Abstract— This paper provides hardware implementation 

considerations for previously developed algorithms designed to 
improve the classification of the modulation of weak radio signals 
utilizing multiple sensors. The case study presented focuses on a 
likelihood-based approach in a centralized data fusion 
framework. Data sets from multiple sensors are fused to obtain a 
more accurate modulation classification as previously 
demonstrated in simulations. The algorithms are implemented on 
a hardware testbed that consists of the laboratory grade software 
defined radio platforms. The performance is examined in 
realistic environments and compared with results obtained via 
simulations. The testbed results indicate that the predicted 
performance improvements are difficult to achieve in practice 
and the algorithms need to be tailored to account for hardware 
features and signal propagation effects. Differences between 
results obtained in simulations and in hardware implementation 
are discussed and adjustments are made to achieve consistent 
improvement necessary for refinement of the solution toward 
military applications.  

Keywords—automatic modulation classification, multi-sensor 
systems, sensor fusion, USRPs, SDR 

I. INTRODUCTION 

A. Software defined radios and modulations 
Recent advances in software-defined radio (SDR) and 

networking technology enable enhanced capabilities for radio 
frequency (RF) communication devices operating in difficult 
environments. Modulations in digital RF communication 
signals enable efficient usage of bandwidth and support 
transmission of information at an adjustable bit-rate for the 
same baud-rate. A transmitter can change the modulation of 
the signal based on the feedback from the cooperating 
receiver. An eavesdropping SDR receiver can self-reliantly 
recognize the modulation format from signal features. In the 
environments with degraded channel quality, such an SDR 
receiver loses its ability to self-reliantly recognize the 
modulation. In this case, several SDR receivers can 
cooperatively sense the signal and jointly classify the 
modulation. 

B. Automatic modulation classification 
During the last decade a number of feature-based (FB) and 

likelihood-based (LB) techniques have been reported to 
advance receiver’s automatic modulation classification 
(AMC) capability [1-4]. AMC is a difficult problem, even for 
the signals adhering to perfect mathematical models in low 
noise scenarios. The AMC is significantly more difficult on 
actual signals in hostile environments. Regardless of the 
algorithm employed, multiple receivers are expected to aid 
classification by exploiting signal diversity [5, 6, 8]. The 
features in a signal overwhelmed by noise may still be 
extracted if several receivers cooperatively observe the signal.  

C. Objectives 
Detection of RF signals encompasses extraction of 

appropriate spectrum content, appraisal of modulation, and 
triggering of an action (for example, decoding or jamming). 
The appraisal of modulation, or AMC, is often difficult due to 
signal degradation and lost features. Our objective is to 
develop and evaluate multi-sensor modulation classification 
(MMC) technology suitable for weak signals.  The program 
aims to demonstrate that MMC can resolve modulation types 
in scenarios where single sensor AMC methods fail. In a noisy 
channel, an adaptive SDR will likely shift toward a low-bit 
rate modulation, which constrains the number of possible 
modulation formats to just a few. This paper addresses current 
implementation results and the performance of the AMC 
algorithm, both achieved in real-time on our SDR test bed. 

D. Current state of practice 
The likelihood-function-based methods for single sensor 

AMC are covered in [2]. The practice is limited because such 
AMC is only suitable for receivers operating in higher SNR 
region. During an engineering examination of modulated 
signals, it is common to plot the Constellation Diagram or I/Q 
scatter plot. For a modulated signal this Constellation Diagram 
exposes a pattern with clusters that reveal the modulation type 
(Q-PSK, 8-PSK, etc.). A better AMC is needed to reliably 
recognize modulations in a highly noisy non-cooperative 
environment. Fusion of data from multiple sensors could 
improve the clustering in a constellation diagram and unveil 
the modulation. 
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II. APPROACH OVERVIEW 

A. Multi-sensor approach 
The multi-sensor approach exploits variants of the observed 

signal obtained from multiple coordinated receivers and 
classifies the modulation type based on a combined data set. 
This scenario is relevant for military applications that require 
RF signal sensing and classification. The sensing and 
classification tasks can be performed by a network of multiple 
low-cost receivers. 

B. Synchronous and asynchronous cases  
The theory and simulations for synchronous and 

asynchronous AMC using Expectation Maximization (EM) 
based algorithms are covered in [7-9]. The papers focus on the 
LB approach that requires computations of likelihood functions 
for each considered modulation format, and a knowledge of 
parameters associated with the observed model including 
channel gain, channel phase, noise variance and time offset at 
the receiver. When the parameters are not available, a 
conditional likelihood function is averaged over probability 
distribution of random unknowns. The resulting averaged 
function is maximized to estimate deterministic unknowns. The 
described variant of the LB approach is termed hybrid 
maximum likelihood (HML) approach. Finding maximum 
likelihood estimates of the unknowns can be computationally 
demanding, which can be circumvented using a numerical EM 
technique. The EM algorithm is performed in an iterative 
manner, starting with an initialization process for the 
unknowns. Similar to any other numerical algorithm, the 
initialization of the EM algorithm has a significant impact on 
the stationary point that the algorithm will converge to. Once 
the unknowns are estimated based on the EM algorithm, the 
maximum likelihood function for each modulation format is 
computed. Finally, the modulation corresponding to the 
maximum log likelihood value is selected.  

A synchronous scheme assumes that the signal variants 
received by different sensors are sampled with a synchronized 

clock. An asynchronous scheme addresses the timing offset 
among sensors by considering it as one of the unknowns. Local 
sensor observations are fused with the assumption that they are 
independent. Flat block-fading that introduces coupling among 
the signal samples received by the same sensor over the 
duration of an observation period was ignored. 

C.  Implementation Considerations  
A transmitting SDR can adjust its signal parameters 

(including signal strength, frequency and modulation) based on 
situational constraints (including channel conditions and 
priorities) and predefined patterns. Receiving SDRs will 
recognize the presence of a signal, coordinate sampling of the 
signal variants and jointly extract useful information from the 
combined sample.  

Theory and simulation predict improvement in Probability 
of correct classification (Pc) for increasing number of sensors. 
For successful transition of this technology in military SDRs, 
in addition to demonstrating consistency of implementation 
with theoretical predictions and simulated results, we seek to 
adjust constraints so that these better reflect limitations of 
actual operational environments. The difficulties are examined 
to tie the unveiled limitations to the assumptions enacted 
during the theoretical development. The complexity of the 
involved algorithms, the execution time, and the amount of 
data shared among sensors all need to be reduced. 

Fig. 1 shows the flow of the synchronous EM algorithm 
which starts with a selection of a modulation format from the 
library of modulations, estimation of the unknowns and 
initialization of the posterior probability. Variables are 
calculated and iteratively updated according to [8–9]. The time 
spent on the execution of the algorithm depends on the sample 
size and number of participating sensors, number of 
modulation formats, selected initialization procedure, and the 
exit criteria (loop indicated in red in Fig. 1). Initialization is the 
most time consuming procedure of the algorithm.  

 

Fig. 1. Likelihood ratio based AMC via EM algorithm 
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The approach starts with assuming unknown parameters for 
the communication signal and assuming specific content for 
the library of modulations, and proceeds with an initialization 
process for the unknowns. These unknowns are updated using 
an iterative EM-based algorithm to find the maximum log 
likelihood values for each modulation in the dictionary. Finally 
the modulation corresponding to the maximum of log 
likelihood value is selected. Local sensor decisions or data are 
fused with the assumption that they are independent. 

III. IMPLEMENTATION AND TESTS 

A. Test Equipment  
To perform testing and validation of the MMC performance 

with an increasing number of sensors, relevant scenarios were 
established and the algorithms were implemented in test-
hardware consisting of the Universal Software Radio 
Peripheral N210 (USRP N210) and GNU radio platform. The 
power output of USRP is 15 dBm and the noise figure is 5 dB. 
The daughterboard performs mixing, amplification and low 
pass filtering of the signals. The on-board FPGA performs 
modulation, digital up/down conversion, interpolation and 
decimation before/after the dual DAC/ADC. Each USRP was 
paired with an omni-directional VERT2450 vertical antennas.  

One USRP platform was designated as the transmitter. The 
remaining USRPs were used as receivers. In this paper we 
report experiments conducted with a varying number of 
receivers, ranging from two to four. Tests with four receivers 
demonstrated a sufficient increase in performance, reaching 
high probability of correct classification. Since four sensors 
provided high performance there was no motivation to consider 
a larger number of sensors. To assess the utility of the 
algorithms in a low SNR environment with a significantly 
larger number of receivers, the testbed would need to be 
expanded and enhanced with the means to provide efficient 
data sharing among sensors, as well as approaches to address 
increased computational complexity and decision timelines.  

B. Test of synchronous MMC with two receivers  
In the implementation of a synchronous MMC algorithm, 

the receiver was assumed to have no time offset. In this case, 
the modulation blocks in GNU radio were used to transmit 
signal modulated with 8-PSK. At the receiver, GNU radio 
blocks including Costas loop and clock recovery were used for 
frequency, phase and clock recovery of the carrier. In this 
setup, two sensors acquired variants of the transmitted signal 
modulated with 8-PSK. The dictionary was constrained to {8-
PSK and 16-PSK}. The synchronous EM algorithm [8] was 
evaluated utilizing data from one sensor and from both sensors. 
During the tests, USRPs were equipped with RFX2400 
daughterboards which did not have variable analog transmit 
gain. Instead, the receiver gain was varied in order to collect 
samples with different levels of distortion. Smaller gain led to a 
degraded constellation, representative of a low SNR scenario. 
One hundred Monte Carlo runs with consequent classification 
decisions were performed for each configuration. The 
probability of correct classification for each configuration was 
calculated by averaging recorded decisions and is presented in 
Table 1. The values of the probability of correct classification 

show that at low receiver gains, probabilities are low for one 
sensor but significantly higher with two sensors. This indicates 
that the addition of a second sensor improves the performance 
for weak signals. For visual clarity, color shading in Tables I–
VI is used to highlight performance. Successful performance is 
indicated using light green shade. Yellow shade highlights 
mediocre performance. Unacceptable performance is indicated 
using light red shading.  

TABLE I.  PC FOR SYNCHRONOUS TEST CASE 

Number  
of sensors 

Receiver Gain 

5 dB 10 dB 15 dB 

L=1 0.06 0.33 0.88 

L=2 0.72 0.9 0.96 

Dictionary: {8-PSK, 16-PSK} 

C. Test of asynchronous MMC with two receivers  
The asynchronous EM algorithm [9] was tested utilizing 

data from one sensor and from two sensors jointly. The 
dictionary was constrained to {QPSK, 8-PSK, and 16-PSK}. In 
this setup, a custom root-raised-cosine (RRC) pulse shaping 
filter was used at the transmitter (instead of the GNU radio 
block for RRC filter) for an increased degree of control over 
the pulse parameters. At the receiver, an identical pulse was 
used to estimate time offset. The modulated signals were 
transmitted sequentially and the probability of correct 
classification for each signal was calculated by averaging the 
results from 80 decisions. Unlike the synchronous algorithm, 
the asynchronous algorithm structure does not have a routine 
for estimating the noise variance. Thus, for the first set of tests, 
the SNR was assumed to be 10 dB, and later estimated to vary 
between 25 and 30 dB using a GNU radio FFT block at the 
receiver. Both, the assumed and estimated values were used 
with the same algorithm and configurations. From Table II, it 
is evident that the performance of the algorithm depends on the 
provided SNR. This indicates the need for accurate real time 
SNR estimation that should be performed in parallel with the 
data collection. As expected, the performance using two 
sensors was better compared to that of a single sensor for 
QPSK and 8-PSK. The performance decreased as the number 
of symbols in the constellation increased. 

TABLE II.  PC FOR ASYNCHRONOUS TEST CASE 

Number of 
sensors 

Modulation of transmitted signal 
SNR QPSK 8-PSK 16-PSK 

L=1 0.267 0.429 0.259 
10 dB 

L=2 1 0.681 0.4 

L=1 0.867 0.25 0.3 
25-30 dB 

L=2 0.917 0.5 0.22 

Dictionary: {QPSK, 8PSK, 16PSK} 
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D. Test of synchronous MMC with four receivers  
The USRP’s SBX and CBX daughterboards have a feature 

to vary the analog transmit gain. This feature enabled a set up 
in which the receive gain was kept constant while the transmit 
gain was varied to emulate scenarios with different levels of 
SNR. For example, Fig. 2 shows instantaneous power of an 
example signal depicted with three power levels:  

- High with SNR ranging between 25 dB and 30 dB, 

- Medium with 10-15 dB SNR, and  

- Low with 0-5 dB SNR.  

The Low signal level is of primary interest. A range of SNR 
values is indicated rather than a single value, because the noise 
floor continuously fluctuates, while the portion of the signal 
containing information maintains its primary characteristics.  

Fig. 2. Example of a modulated signal with three different power levels 

 

 

Fig. 3 depicts the test set up consisting of one transmitting 
USRP and four receiving USRP nodes located 18 feet away 
from the transmitter. In this configuration, closely spaced 
receivers can be wired for complete data sharing. The SBX and 
CBX daughterboards with variable transmit gain allow for 
laboratory testing with gain control which affects signal 
quality. 

Fig. 3. Experimental set up 

 

 

The probabilities of correct classification for transmitted 
QPSK and 8-PSK signals are presented in Table III and IV, 
respectively. The results for QPSK in Table III are clearly 
excellent.  The results for 8-PSK in Table IV are conflicting. 

Tests of the synchronous MMC with four receivers were 
carried out with a similar configuration to that described in 
Section II.B-C with one difference. The signal strength was 
altered by an application of variable transmit gain. The receive 
gain was set to a constant 30 dB. The results for classifying 8-
PSK modulation show improvement when two sensors are 
used. However additional sensors lead to a degradation of 
performance. This degradation was expected only for high 

SNR scenarios due to an inaccurate initialization process, in 
agreement with simulations of such conditions. For low SNR 
conditions, the expected monotonically increasing performance 
with a higher number of sensors was not evident in the results. 
The degradation is due to the phase error encountered when 
data from different sensors are combined. 

If two sensors can provide improvement in a low SNR 
case, the multi-sensor concept can be adjusted to include 
distributed pairs of sensors. Hence, the 8-PSK MMC in low 
SNR case was evaluated using pairs of sensors. The 
experiments were conducted using a synchronized EM based 
algorithm with various pairwise sensors combinations to assess 
potential hardware problems or trends. Table V shows the 
probability of correct classification using different 
combinations of USRPs labeled as A, B, C and D. The 
performance showed high degree of variance from one pair to 
the next. This induced the need to investigate the received data 
for possible anomalies. The anomalous data could be 
potentially tagged and excluded from analyses.  

TABLE III.  PC WHEN TRANSMITTED QPSK 

Average SNR 
Number of sensors 

L=1 L=2 L=3 L=4 

2 dB 0.15 0.94 0.90 0.95 

12 dB 0.24 0.90 0.96 0.91 

27 dB 0.39 0.93 0.93 0.92 

Dictionary: {QPSK, 8PSK} 

 

TABLE IV.  PC WHEN TRANSMITTED 8-PSK 

Average SNR 
Number of sensors 

L=1 L=2 L=3 L=4 

2 dB 0.69 0.88 0.64 0.58 

12 dB 0.76 0.91 0.54 0.58 

27 dB 0.82 0.93 0.72 0.56 

Dictionary: {8PSK, 16PSK} 

 

TABLE V.  PC WHEN TRANSMITTED 8-PSK IN LOW SNR WITHOUT 

VERIFYING DATA INTEGRYTY 

Sensor A B C D 

A  0.84 0.71 0.68 

B 0.84  0.66 0.51 

C 0.71 0.66  0.63 

D 0.68 0.51 0.63  

Dictionary: {8PSK, QPSK} 
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Investigation of the varying classification performance 
evident in Table V revealed that not all of the USRPs were 
receiving the constellation correctly at all times. Fig. 4 
provides examples of received signal constellation diagrams, 
modulated with QPSK. The example depicts two SNR cases: 
Low SNR and High SNR. The High SNR examples are 
provided for visual clarity and to highlight the artifact. The 
constellation diagrams were examined continuously in real-
time for all four sensors. It was discovered that each 
constellation became corrupt due to a frequency offset which 
would appear from time to time. No obvious pattern to such 
occurrences was observed. The corrupt constellation eventually 
cleared up on its own. The time varying nature of signal 
artifact was difficult to observe in the constellation diagram of 
a low SNR scenario (one snapshot of which is presented in the 
top row of Fig. 4). We increased the signal’ SNR by properly 
adjusting the gains and were able to observe the artifact. The 
High SNR data snapshot is shown in the second row of Fig. 4. 
This is a good example of reliable data. Another High SNR 
data snapshot is shown in the bottom row of Fig.4. This is a 
representative example depicting the presence of the artifact. 
Even signals with higher SNR exhibited inconsistencies in 
their constellation due to the frequency offset. These 
inconsistencies appearing as random phase rotations occurred 
during the observation period on all of the sensors. 

Fig. 4. Example constellation diagrams for sensors A, B, C and D.  

 

Since our objective was to verify the effectiveness of 
algorithms under low SNR conditions, reliable data sets at low 
SNR were required for an accurate assessment of the 
algorithms’ utility. When an integrity check was used to flag or 
discard degraded data, the algorithms performance was 
adequate, and the classification improved consistent with the 
reported simulation results [8-9]. 

E. MMC by individual estimation of unknowns 
A rigorous scrutiny of the implementation results exposed 

that the values of the maximum likelihood ratios for different 
modulation formats in the dictionary were extremely close. 
This effect was speculated to be caused by the joint estimation 
of the unknowns based on a marginalized joint likelihood 
function. When the unknowns were estimated individually, and 
the sum of the maximum likelihood ratios was used to make the 
final decision, the performance was expected to improve with 
addition of sensors. Table VI depicts the results for a setup in 

which the unknowns were estimated individually. A lower 
SNR scenario was emulated by setting the transmit gain and 
the receive gain to 1 dB. The classification was carried out in 
configurations involving a varying number of receivers: each 
sensor performed classification, four pairs of sensors were 
randomly chosen, and all four SDRs were utilized for a joint 
decision. In each configuration, one hundred Monte Carlo runs 
were used to make decisions and determine the probability of 
correct classification. This procedure was performed twice, 
once for signals modulated with 8-PSK and again for QPSK 
modulation.  

TABLE VI.  PC  USING INDIVIDUAL ESTIMATION OF UNKNOWNS 

Tx Gain=1 
Rx Gain=1 

Probability of correct classification (Pc) from indicated 

Number of sensor L and sensor identification 

Tx 
Modulation L=1 USRP 

ID L=2 USRP 
ID L=4 USRP 

ID 

8-PSK 

0.32 A 0.86 A, B 

0.92 
A, B, C, 

and D 

0.88 B 0.45 A, C 

0.20 C 0.88 C, B 

0.19 D 0.88 C, D 

QPSK 

0.86 A 0.86 A, B 

0.96 
A, B, C, 

and D 

0.56 B 0.77 A, C 

0.86 C 0.86 C, B 

0.83 D 0.86 C, D 

 Dictionary: {8PSK, QPSK} 

 

Table VI shows that the performance of multiple sensors 
was much better compared to that of single sensor. It is also 
evident that, when using the method of individual estimation, 
the performance increase depicts a monotonic trend and 
eliminates any kind of degradation that was observed when 
using joint estimation of the unknowns. This was a very 
positive aspect of these results - the performance improved as 
the number of sensors was increased consistent with 
simulations predictions.  

IV. PRACTICAL CONSIDERATIONS 

A. Algorithms tunining 
The inconsistencies seen between simulations and 

implementation in our evaluation and tests may be attributed to 
a combination of factors including lack of independence in 
signal variants observed by closely spaced receivers, multi-
path fading, instability in frequency-selective time-varying 
channels, and minor changes in carrier frequency. Generally 
there is a stated need for the preprocessing of a signal for noise 
reduction, and estimation of various parameters, including 
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carrier frequency, symbol period, and signal power. When 
several variants of the same signal are expected, there is a need 
for equalization and synchronization. When multiple sensors 
provide data for the same signal of interest, discarding data that 
is a suspect of being corrupted is easier and faster. In the 
context of an operational system, real-time interception and 
processing are vital for actionable response and decision 
making. Our preliminary analyses of achievable processing 
time indicate a trade-off between prediction quality and real-
time operations. 

Depending on the nuances of a classification algorithm, 
different preprocessing tasks may be required. Multi-sensor 
classifiers are developed assuming spatial diversity and 
independent channels and often require a large number of 
samples. The implementation challenges correlate to the 
quality of hardware under consideration. Different SDR 
hardware may present various challenges and limitations in 
terms of sensitivity to noise and ability to recover carrier phase 
and frequency. In a case study with USRPs, the time varying 
random distortion in the received signal was evident. This 
distortion may have been the cause of degraded performance 
manifesting itself in larger signal variation over that predicted 
through simulations. Thus, the algorithms needed to be tuned 
to suit the hardware under consideration to ensure the 
consistent and reliable performance. 

B. Relevancy and Impact 
Those responsible for communications integrity should use 

the results in this paper to help them understand the difference 
between theoretically predicted possibilities, and the 
capabilities that are actually achievable in the battlefield.  

The impact of our success is an improved capability to 
classify modulations of weak signals using a handful of low-
cost sensors, sharing data in a coordinated manner. 

V. CONCLUSION 

An overview of the technology aspects encompassing 
utilization of multiple low-cost sensors for automatic 
modulation classification of weak signals was presented in this 
paper with a focus on a case study using USRPs. The 
implementation of synchronous and asynchronous EM 
algorithms on a testbed consisting of several SDRs was 

presented and discussed in light of refining achieved solutions 
for relevant military applications.  

The initial implementation showed evident improvement in 
performance when two sensors were used for classification 
compared to a single sensor scenario. However, due to 
initialization errors and joint estimation of the unknowns, the 
performance of the algorithm declined as the number of 
sensors increased. This was a counterintuitive and disturbing 
finding. However, there was an evident improvement in the 
USRP case study when the procedure for estimation of the 
unknowns was adjusted. Once the algorithm was modified to 
estimate the unknowns individually and make the final decision 
from the sum of the individual maximum likelihood ratios of 
each sensor, a performance improvement became evident for 
an increasing number of sensors.  
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