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Abstract—The year 2019 witnessed the rollout of the 5G stan-
dard, which promises to offer significant data rate improvement
over 4G. While 5G is still in its infancy, there has been an
increased shift in the research community for communication
technologies beyond 5G. The recent emergence of machine
learning approaches for enhancing wireless communications and
empowering them with much-desired intelligence holds immense
potential for redefining wireless communication for 6G. The
evolving communication systems will be bottlenecked in terms
of latency, throughput, and reliability by the underlying signal
processing at the physical layer. In this position paper, we moti-
vate the need to redesign iterative signal processing algorithms
by leveraging deep unfolding techniques to fulfill the physical
layer requirements for 6G networks. To this end, we begin
by presenting the service requirements and the key challenges
posed by the envisioned 6G communication architecture. We
outline the deficiencies of the traditional algorithmic principles
and data-hungry deep learning (DL) approaches in the context
of 6G networks. Specifically, deep unfolded signal processing is
presented by sketching the interplay between domain knowledge
and DL. The deep unfolded approaches reviewed in this article
are positioned explicitly in the context of the requirements
imposed by the next generation of cellular networks. Finally,
this article motivates open research challenges to truly realize
hardware-efficient edge intelligence for future 6G networks.

Impact Statement—In this article, we discuss why the infu-
sion of domain knowledge into machine learning frameworks
holds the key to future embedded intelligent communication
systems. Applying traditional signal processing and deep learning
approaches independently entails significant computational and
memory constraints. This becomes challenging in the context
of future communication networks such as 6G with significant
communication demands where dense deployments of embedded
internet of things (IoT) devices are envisioned. Hence, we put
forth deep unfolded approaches as the potential enabling tech-
nology for 6G Artificial Intelligence (AI) radio to mitigate the
computational and memory demands as well as to fulfill the fu-
ture 6G latency, reliability, and throughput requirements. To this
end, we present a general deep unfolding methodology that can
be applied to iterative signal processing algorithms. Thereafter,
we survey some initial steps taken in this direction and more
importantly discuss the potential it has in overcoming challenges
in the context of 6G requirements. This article concludes by
providing future research directions in this promising realm.
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processing, deep unfolding.
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I. INTRODUCTION

Fifth-generation (5G) mobile technology made significant

advancements with respect to previous generations. The year

2019 witnessed the Phase-I 5G rollouts with a promise of

fulfilling the needs of end-users and network operators. While

5G is still in the rollout and evaluation phase, current research

activity is centered around beyond-5G communications to

meet the ever-growing demands of tactile communication with

immersive user experience. The ITU-Telecommunication stan-

dardization sector organized the Network 2030 focus group to

study the capabilities of the network for the year 2030 and

after to support revolutionary communication technologies.

Network 2030 intends to identify the enabling technologies

and infrastructure evolutions to offer revolutionary communi-

cation experience with immersive holographic communication,

telesurgery, tactile multimedia communication over the inter-

net, among others. The enabling technologies require high-

speed communication with ultra-low latencies to guarantee

tactile internet with an immersive communication experience.

With this vision, the Future Communications Summit has been

organized with the support of IEEE to organize research work-

shops and layout the R&D roadmap for enabling technologies

and services towards 6G. The race towards 6G has already

begun with network operators, commercial cellular companies,

and academic institutions leading the revolutionary beyond 5G

research. For instance, 6G-Enabled Wireless Smart Society

and Ecosystem - 6Genesis - was launched in 2018 by the

Academy of Finland to study the 6G service requirements and

the key technology enablers [1].

The beyond 5G research will encompass diverse domains

including scalable-intelligent communications, autonomous

network operations, intelligent surfaces, physical layer ap-

proaches, etc. The peak data rate of 6G is envisioned to

be 1 Tbps which is a 100× improvement over 5G. The

diverse application scenarios of 6G as in Fig.1 will require

satisfying heterogeneous service requirements [2], [3], [4],

[5], [6] for machine-to-machine, human-to-machine, ultra-

dense IoT networks, etc., as shown in Table I. Figure 1

shows a bird’s eye view of how in each envisioned 6G use

case deep unfolding physical layer approach can serve as the

key enabler. The envisioned 6G communication will witness

3D communication hierarchy, dense device deployments to

support multiple revolutionary autonomous use cases such

as holographic video conferencing applications, connected

autonomous scenarios like smart grid, smart city, precision



2 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

manufacturing, vehicle-to-everything (V2X), telehealth, etc.

Consequently, the envisioned hardware requirements of the

future 6G AI radio is shown in Fig.2.

TABLE I: Emerging communication requirements for 6G

Specifications Requirements

Ultra-high data rate 1 Tbps (downlink)

100 Gbps (user data rate)

Ultra-low latency ∼ 0.1 ms

Processing delay ≤ 10 ns

Ultra dense network 10× w.r.t 5G device/km2

Mobility 1000 km/hr

Reliability 10−9 Frame error rate

Spectral efficiency 100 bps/Hz (downlink)

Energy efficiency ∼ 1pJ/bit

Intelligent communication is envisioned as a key enabler

for future 6G networks [7]. Machine Learning (ML) has

attained significant breakthroughs in domains such as natural

language processing, speech recognition, computer vision,

among others, and is emerging as a prominent tool for wireless

communications. Deep learning (DL) [8] - a subset of ML -

has been applied to wireless communication problems such as

signal recognition [9], [10], [11], detection, characterization,

channel estimation, optimal network resource allocation [12],

error correction coding schemes, and other physical layer

applications [13], [14], [15]. In addition to physical layer

optimizations, DL has been applied to upper layers as well

for intelligent routing, MAC, and transport control. Although

from a 6G latency and data speed requirements perspective,

the upper layer enhancements would be constrained by the

physical layer signal processing capability.

Several works [16], [17], [13], [14] have studied the concept

of intelligent wireless communication. An intelligent edge

concept for wireless communication is elaborated in [16]. The

learning-driven radio resource management and signal encod-

ing problem is studied in depth. However, they do not study

the complexity of these approaches and their implementation

platforms (edge computing devices). The architecture of 6G

networks and the concept of intelligent radio is presented

in [17]. They also briefly mention the importance of an

intelligent physical layer in realizing the 6G communication

requirements. Their work does not present the candidate

physical layer approaches that will realize the intelligent

physical layer concept. A detailed study of the traditional

machine learning techniques as applied to solving wireless

communication problems is discussed in [13]. Nonetheless,

the performance of these techniques from a hardware-efficient

implementation standpoint is lacking in this work. Authors

of [14] focus on various machine learning approaches for

physical layer communication but do not address model driven

deep unfolding which is the focus of this article in the context

of envisioned 6G requirements.

Previous works especially [2], [7], [18], [19] discussed the

various 6G use cases and enabling technologies. However,

they do not mention how physical layer techniques can be

realized for an edge computing platform to facilitate the key

concept of ML at the edge for 6G. Recently, [20] surveyed

deep unfolding as applied to physical layer signal processing.

The focus of this work was to provide an in-depth survey of

deep unfolding techniques with special emphasis on multiple-

input multiple-output (MIMO) wireless systems and belief

propagation decoding of error correction codes. In contrast,

our work provides a succinct account of the state-of-the-art

deep unfolding approaches which could serve as potential 6G

enablers, contrast, and tabulate their performance with tradi-

tional principled approaches as well as other deep unfolded

counterparts. We present the deep unfolded techniques that

perform various receiver operations such as signal estimation

and detection, self-interference cancellation, and advanced

error correction. In addition, we present the generic layout

of deep unfolding methodology for any signal processing

application and discuss revolutionary research directions to

enable future communication networks.

In summary, we will be focusing on the promising physical

layer solutions that can open doors for future 6G networks.

The data-hungry nature and exponential complexity of DL

solutions are the key challenges hindering its widespread

deployment. We aim to motivate the reader in understanding

how computationally intensive DL approaches may not be

the solution to achieve the 6G communication requirements.

Instead, integrating the powerful learning capability of DL

with algorithmic knowledge will relieve the computational

burden as well as improve the robustness. Therefore, this is

the first work that studies the potential intelligent hardware-

efficient physical layer solutions that would serve as key

enablers to realize the 6G AI radio concept (Fig.2).

II. BACKGROUND - 6G AI RADIO: NEED FOR EDGE

INTELLIGENCE

We argue that AI will empower 6G in all aspects from

network orchestration and management, physical layer signal

processing, and data mining, to service-based context-aware

communication. Researchers have already started envisioning

and planning the key enabling technologies to support future

6G communications under different labels such as 5G+ and

beyond 5G. uRLLC was defined in 5G standards to attain

latency of the order of 1 ms for latency-critical applications.

Fog networking and mobile edge computing paradigms were

introduced in 5G to greatly reduce the delay as well as

network congestion typically encountered in a user equipment

(UE) to centralized base station communication. However,

fog nodes cannot act as independent cloud data centers and

rely on a centralized cloud. Cloud radio access networks (C-

RAN) are another derivative of cloud computing wherein the

traditional base stations are replaced with distributed remote-

radio-heads and a centralized baseband unit (BBU). In the

C-RAN architecture, the signal processing computations are

performed at the BBU. Although C-RAN may fulfill the

service requirements of 5G, the communication overhead,

service heterogeneity, and computations performed at the
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Fig. 2: Overview of hardware requirements of 6G AI radio

BBU to provision 6G networks will prohibitively increase

the computational complexity and latency. An emerging idea

to address this is the open radio access network (O-RAN)

which embraces openness and intelligence as its core concepts

[21]. O-RAN provisions well-defined open interfaces between

elements implemented on general purpose hardware as well as

the integration of RRHs and BBUs from different vendors. We

envision model-driven intelligent signal processing modules

deployed on the O-RAN for inference with computationally

simpler hardware.

Cell densification is a key enabler for attaining increased

network capacity. 6G aims at ultra-dense network deployments

(ultra-massive IoT) involving multiple cells within a macro-

cell. The diverse 6G use cases such as high precision manufac-

turing, vehicle-to-everything, smart homes will involve hetero-

geneous devices operating in a micro-cell. However, such 6G

applications will involve addressing several key challenges.

The heterogeneity, high-frequency operation, mobility, and

dense operation will introduce a different dimension of propa-

gation, spectrum access, radio resource allocation, scheduling,

and security concerns. These hurdles will be exacerbated with

the envisioned 3D communication infrastructure [18] for 6G

incorporating mobile ground and aerial platforms. In the large

scale dense deployments planned for 6G, intelligent physical

layer schemes will play a crucial role in fulfilling the service

requirements.

The exploitation of ML at the edge will become a pri-

mary enabler for 6G communications. State-of-the-art DL

solutions for wireless communication including multiple-input

multiple-output (MIMO) channel estimation and equalization,

beamforming, error correction and coding, signal recognition,

etc., [12] are computationally complex requiring powerful

computational platforms. However, the adept learning capa-

bility of DL architectures motivates the need to incorporate

them for future communication networks. In fact, significant

breakthroughs in AI have urged it to be part of 5G yet

deployed only in facilities with massive training data and

powerful computing platforms. However, to facilitate ML

at the edge, lighter implementations of DL solutions will

need to be developed. Additionally, the black-box nature of

neural networks (NNs) renders them incomprehensible and

unpredictable such that it is challenging to gain insight into

the learned function from the network architecture. Therefore,

NNs introduce three key challenges: resource-constraint, com-

putational complexity, and black-box nature. The baseband

physical layer signal processing techniques will be run on

the UE as well as base stations. Every generation of com-

munication standards is bottlenecked by the UE’s capability.

Consequently, executing these DL solutions in the current UE

platforms will be infeasible as they do not possess powerful

computational platforms as required by these approaches.

Therefore, intelligent baseband signal processing designed for

future 6G networks must be tailored for lightweight embed-

ded computational platforms with stringent energy efficiency,

reliability, and latency objectives. Fusing domain knowledge

into the DL architectures holds immense potential to accelerate

the training process and model convergence while enhancing
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Fig. 3: Methodology for Deep unfolded signal processing

the model efficiency. To this end, deep unfolding [22], [20] -

algorithmic unrolling of signal processing models (principled

approaches) integrated with trainability using DL strategies -

is emerging as a scalable and efficient approach. We envision

such deep unfolded (model-driven) approaches as a promising

solution in facilitating ML at the edge for future 6G end-to-end

communication architectures to garner performance gains and

implementation ease. Model-driven DL will form a pervasive

component of the 6G communication infrastructure granting

the ability to perform self-optimization of network resources,

traffic control, authentication measures, anomaly prediction

and preemption, rapid channel estimation, error correction and

coding, and physical layer security schemes forming a fully

autonomous 6G communication grid.

III. METHODOLOGY - DEEP UNFOLDED SIGNAL

PROCESSING FOR 6G

We believe model-driven DL could be the key to enhance

the performance and inference times of communication sys-

tems. This section discusses the advantages of combining

domain knowledge with the learning ability of DL to mitigate

the deficiencies of traditional signal processing and black-box

NN approaches.

More than a handful of principled signal processing ap-

proaches at the physical layer - signal detection, interference

estimation, channel estimation, encoding, decoding, etc - can

be defined by optimization problems which can be subse-

quently solved with iterative inference algorithms. Such it-

erative approaches typically involve computationally intensive

operations such as eigen decomposition, matrix inversion, etc.,

requiring a large number of iterations to converge. One such

example of a non-scalable traditional approach is maximum-

likelihood detection which attains optimal performance but

at the expense of exponential complexity that scales with

the decision variables. However, the computationally lighter

alternative suboptimal linear detectors such as linear minimum

mean squared error (MMSE) and Zero-Forcing comes with

reduced reliability. Similarly, the traditional iterative MIMO

detectors such as Approximate Message Passing (AMP) and

Expectation Propagation offer good reliability but with mod-

erate computational complexity.

Traditional signal processing approaches rely on careful

parameter tuning, initialization, and step-size selection to offer

acceptable performance and convergence speed. In practice,

they are tuned based on heuristics such that they are chosen

arbitrarily or from exhaustive searches in simulations. How-

ever, such heuristic-based selections result in instability and

suboptimal performance. We argue that such deficiencies can

be mitigated by combining the domain knowledge from prin-

cipled signal processing algorithms with the learning ability

of NNs to yield deep unfolded signal processing. This can be

perceived as an instance of model-driven NN.

Deep unfolding refers to the process of unfolding the

iterations of a principled inference algorithm to form a layered

structure analogous to NN. Deep unfolded signal processing

combines the benefits of both DL and domain knowledge of

the signal processing models to improve the model perfor-

mance with computationally lighter architectures. For exam-

ple, an N-step iterative inference algorithm can be unfolded

into an N-layered NN with trainable parameters based on the

model. The parameters can be learned with tools from DL such

as backpropagation, SGD, etc. A general layout to perform

deep unfolding is shown in Fig. 3.

As an illustrative example, we will show the algorithmic

unrolling of the Alternating Direction Method of Multipliers

(ADMM) as proposed in [23] for MIMO detection in Fig.

4. Here, the optimization problem P1 is ADMM. The L-

step iterative algorithm, unfolding, and trainable parameters

are shown in Fig. 4. ADMM-Net considers a MIMO system

with received signal y ∈ R
M , transmit signal x ∈ {±1}N , and

channel matrix H ∈ R
M×N . A weighted mean squared error

between ground truth and predicted symbols is chosen as

the loss function to train ADMM-Net. Here, Γβ,t(x) is the

projection operator. All these components together help to

successfully unroll the iterative ADMM algorithm into a neural

network architecture shown in Fig. 4. The application and

advantages of ADMM-Net are discussed in greater depth in

section IV-B.

IV. DISCUSSION

In this section, we will review physical layer pertinent

signal processing tasks that have been significantly improved

with deep unfolding. We will specifically discuss this in the

context of envisioned 6G requirements and how some of these

steps will be critical for the next generation of communication

networks.

A. Signal Recovery Schemes

Signal recovery involves the problem of reconstructing the

signal from noisy measurements. This could involve suppress-

ing the effect of self-interference, co-channel interference,

noise, multipath, or propagation effects from the received

signal. Several key techniques envisioned for 6G such as

mmWave massive MIMO, Terahertz (THz) band communica-

tion, optical wireless communication, full-duplex (FD), ultra-

massive MIMO (UM-MIMO), etc., require channel estimation

and interference suppression techniques to sustain reliable

communication links. Such potential signal reconstruction

techniques for 6G must be adaptive, fast, and reliable to

sustain the latency and data rate requirements. Consequently,

we investigate current state-of-the-art deep unfolded signal

recovery techniques that could serve as potential candidates

or form a stepping-stone for future enhancements. Deep un-

folding has been applied to signal recovery problems recently
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Fig. 4: Deep unfolded representation of ADMM-Net

in [24], [25], [26]. Sparse signal processing will be required

to support tactile internet applications for 6G with latency

∼0.1ms. Massive sporadic traffic generated from dense IoT

devices requires ultra-fast burst data acquisition and processing

at the physical layer. Iterative Soft Thresholding Algorithm

(ISTA) is a powerful signal processing tool for sparse-signal

recovery. However, ISTA requires numerous iterations to

converge at an acceptable normalized mean squared error

(NMSE) which can lead to processing delay contributing to

communication latency. Several successors of ISTA - learned

ISTA (LISTA), AMP, Trainable Iterative Soft Thresholding

Algorithm (TISTA) - were proposed recently of which the

latter have been shown to outperform the others [24].

TISTA deep unfolded the iterative ISTA with a trainable

step-size parameter. Additionally, the thresholding function

of ISTA is replaced with an MMSE-based shrinkage func-

tion. TISTA essentially unfolded the N-step ISTA into an

N-layered DL architecture with N + 2 learnable parameters.

The fewer trainable parameters lead to a highly stable and

faster training process. TISTA adopts an incremental training

strategy to mitigate the vanishing gradient problem. TISTA

demonstrated significantly faster convergence than orthogo-

nal approximate message passing (OAMP) and LISTA [27].

Specifically, TISTA exhibited 37× faster performance and

better NMSE than LISTA. The computational efficiency was

demonstrated by evaluating TISTA on an Intel Xeon(R) 6-core

CPU rather than GPU.

Energy efficiency will be a primary factor in design-

ing future 6G radios. Analog-to-digital converter (ADC) is

a ubiquitous component in radio hardware. However, their

energy consumption and chip area increase with their bit

resolution. Especially, to support the ultra-high data rate 6G

communication technologies such as THz and optical wireless

communication, ADCs that can support a very high sampling

rate will become quintessential. Hence, even an 8-bit ADC

to support such high sampling rates will significantly scale

the manufacturing cost and power consumption of the device.

However, very low-resolution 1-bit ADCs that can support

very high sampling rates can significantly lower the power

consumption, cost as well as the chip area. Consequently,

signal processing techniques for 1-bit quantized signals must

be considered for future transceiver architectures. An unfolded

deep NN-based signal recovery scheme for 1-bit quantized

signals - DeepRec - is proposed in [25]. DeepRec unfolds

the iterations of the maximum-likelihood signal estimator into

the layers of a deep NN. The maximum-likelihood estimation

can be solved with the iterative gradient ascent method.

Each iteration of the gradient ascent was represented with

an equivalent layer in NN with ReLU activation. For a 90-

layer DeepRec model, the performance improvements in terms

of NMSE and computational efficiency were demonstrated in

contrast to the traditional gradient descent method.

Promising technologies such as THz in conjunction with

FD radios have the potential to fulfill the Tbps data rate

requirements of 6G. Radio transceivers with the ability to

transmit and receive simultaneously on the same frequency

band - FD radios - have the potential to double the spectral ef-

ficiency of a point-to-point radio link. Consequently, FD radios

have the potential to double the attainable data rates of future

communication networks. However, the self-interference (SI)

caused by such FD radios is a serious limiting factor that is

slowing down its widespread adoption.

SI mitigation involves estimating the interference term and

suppressing it from the signal component. The performance

gains from deep unfolding a state-of-the-art polynomial SI

cancellation approach are investigated in [26]. The weighted

polynomial sum expression is unrolled into a feed-forward

NN with one hidden layer. Deep unfolding yielded a compu-

tationally simpler architecture with only 13 neurons (nodes)

whose weights can be estimated by supervised learning with

backpropagation. In contrast to the polynomial canceller, the

unfolded SI canceller [26] exhibited a lower quantization bit-

width requirement for the same cancellation performance. The

computational efficiency and hardware implementation were

demonstrated on Xilinx Virtex-7 FPGA and Fully-Depleted-

Silicon-On-Insulator (FDSOI) ASIC. The FPGA implementa-

tion demonstrated a 96% higher throughput and significantly

lower resource utilization in contrast to polynomial canceller.

Similarly, the unfolded SI canceller implementation on ASIC

exhibited an 81% better hardware efficiency.

B. MIMO Detection Techniques

Massive MIMO techniques in the mmWave band are serving

as key enablers of the 5G networks. However, UM-MIMO

techniques in conjunction with high frequency communication
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bands will serve as candidate technologies to satisfy the ultra-

high data rate requirements of 6G communications. Large

intelligent surfaces that scale beyond conventional antenna

arrays are also envisioned as a candidate technology for 6G to

enable wireless charging capabilities and extremely high data

rates. Such intelligent surfaces can be realized via THz UM-

MIMO. Fast, robust, and hardware-efficient MIMO transceiver

techniques will be an inevitable part of future 6G systems.

Therefore, we will review intelligent deep unfolded MIMO

transceiver techniques that outperform traditional schemes.

Traditional MIMO detection techniques such as AMP, lattice

decoding, sphere decoding, conditional maximum-likelihood

decoding, etc., will incur significant complexity-reliability

trade-off for large scale massive MIMO systems. For in-

stance, the sphere decoder is a search algorithm that performs

maximum-likelihood detection but with exponential complex-

ity that scales with the number of transmit antennas. However,

such exponential complexity will be detrimental to the latency

and hardware efficiency of UM-MIMO systems envisioned for

6G. ADMM is an iterative algorithm to solve the maximum-

likelihood MIMO detection problem which becomes compu-

tationally complex for large-scale MIMO systems.

ADMM-Net proposed in [23] unfolds the iterative ADMM

algorithm into a simpler DNN architecture. ADMM-Net is

unfolded into a neural network with 40 layers to perform

signal detection for a 160×160 massive MIMO system. The

unfolding is performed by untying the penalty parameter λ into

two terms such that one accounts for channel gain (p) while

the other serves as the trainable parameter (w), i.e., λ = p◦w.

The projection (Π{±1}N ) at each layer (l) is untied to act as a

per-layer trainable parameter (Γβl ,tl−1
(x)) as follows.

zl = Π{±1}N

(

xl−1 −ul−1

)

in iterative ADMM (1)

zl = Γβl ,tl−1

(

xl−1 −ul−1

)

in ADMM-Net (2)

The approach only involves a matrix inversion once initially

instead of at each layer to ease the computational burden.

ADMM-Net was deployed on an Intel core i7-CPU to exhibit

support on a computationally lighter platform with an infer-

ence time of ∼ 2.8 ms whereas the semi-definite relaxation

(SDR) and DetNet required 17.2 ms and 246 ms respectively

for the 160×160 massive MIMO setting. Here, the traditional

sphere decoder system was too slow to run to completion.

Further, ADMM-Net outperformed traditional zero-forcing

detector, SDR, and DetNet in terms of reliability for the

160×160 massive MIMO setting.

The past couple of years witnessed an emergence of sev-

eral deep unfolded massive MIMO detection algorithms -

DetNet, OAMPNet [28], MMNet [29], etc.,- that integrate

the benefit of domain knowledge and DL. Among which

MMNet outperforms its deep unfolded counterparts (DetNet,

OAMPNet) as well as traditional model-based algorithms

such as MMSE, Vertical-Bell-Laboratories-Layered-Space-

Time (V-BLAST), SDR, and AMP under realistic MIMO

channel conditions. MMNet models the iterative procedure to

solve maximum-likelihood estimation as two separate NN ar-

chitectures for simple AWGN and arbitrary channel matrices.

To further illustrate this, consider a Nt ×Nr MIMO system

y = Hx+n with Nt transmit antennas and Nr receive antennas,

where y ∈ C
Nr
, x ∈ C

Nt
, H ∈ C

Nr×Nt , and n ∼ CN (0,σ2INr)
are the received signal, transmitted signal, channel matrix, and

additive white Gaussian noise respectively. The maximum-

likelihood of x is x̂ = arg min
x∈CNt

||y−Hx||2. A general iterative

framework to solve the maximum-likelihood MIMO detection

comprise,

zl = x̂l +Al(y−Hx̂l +bl) intermediate signal (3)

xl+1 = ηl(zl) denoiser (4)

The MMNet neural network for arbitrary channel matrices

corresponding to the above shown iterative framework is

zl = x̂l +θ
(1)
l (y−Hl x̂l) (5)

xl+1 = ηl(zl ;σ2
l ) (6)

where θ
(1)
l is a Nt ×Nr complex-valued trainable matrix and

σ2
l = f (θ

(2)
l ) represents the noise variance with a trainable

vector θ
(2)
l of size Nt × 1. In its simplistic form, each layer

of the network performs two steps: 1. obtain an intermediate

signal representation using a signal estimate from the previous

layer, residual term, and bias. 2. Apply a non-linear denoising

function on the intermediate signal to obtain signal estimate

which will be fed as input to the subsequent layer.

A 10-layer MMNet model outperforms the classic MMSE

detector and OAMPNet by ∼ 4 − 8dB and 2.5dB respec-

tively. Additionally, MMNet achieves the SNR gain at 10-

15× lower complexity in contrast to OAMPNet. The tradi-

tional SDR and V-BLAST schemes deviate from the ideal

maximum-likelihood performance at higher SNR and mod-

ulation schemes. Similarly, the AMP algorithm suffers from

robustness issues at higher SNR levels and modulation or-

ders. However, MMNet with its lower complexity and fewer

trainable parameters stays very close (within 1.5dB) to the

maximum-likelihood performance with increasing SNR and

modulation orders.

The space dimension will be significantly exploited in 6G

networks in conjunction with high-frequency bands. For exam-

ple, a UM-MIMO array for THz communications in the 1 THz

band will involve at least 1024×1024 antenna elements. Fig-

ure 5 shows the Big-O complexity analysis of traditional AMP

and MMSE with two deep unfolded techniques - MMNet and

OAMPNet for varying UM-MIMO antenna array configura-

tions. MMNet offers lower complexity as compared to MMSE

and OAMPNet while offering lightweight complexity as with

traditional AMP in addition to performance enhancements as

discussed previously. Intelligent deep unfolding approaches

adopted in these MIMO receiver techniques lay the basis for

other multi-antenna techniques such as beamforming, spatial

multiplexing, and space-time block coding. We expect such

unique combinations of intelligent multi-antenna techniques

when integrated with high-frequency bands to profoundly ben-

efit the 6G communication networks in attaining the desired

range as well as communication capacity.
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Fig. 5: Complexity comparison for 6G UM-MIMO scenarios

C. Advanced Error Correction Schemes

Resilient communication is paramount in wireless networks.

Especially, with the envisioned dense networks, propagation

and multipath channel effects associated with high frequency

bands, error detection and correction schemes become in-

evitable to sustain the future 6G wireless links. With this

vision, European Union founded a 6G research project -

Hexa-X - for advanced error correction, distributed MIMO,

applied AI/ML, channel coding, adaptive modulation schemes

to enable basic 6G technologies [30]. The flagship initiative

headed by Nokia and Ericsson brings together a consortium of

major industry and academic stakeholders to direct research

efforts to standardize 6G. Along the same line, another EU

project Horizon2020 ICT-09-2017 “Networking research be-

yond 5G” aimed at studying key enabling technologies such as

error correction schemes, THz communication, etc for future

communication networks.

Low-density parity check (LDPC) codes introduced by

Gallager has been adopted in 5G networks especially in the

eMBB scenarios. However, to support the 100× through-

put requirements of 6G, the encoder and decoder for such

advanced error correction schemes must further improve in

terms of latency and hardware efficiency. A model-driven

DL approach to LDPC decoding intended to support NN

oriented AI chips is proposed in trainable projected gradient

descent (TPG decoder) [31]. A linear programming (LP)

formulation of LDPC decoder was proposed by J. Feldman

which can be represented as an optimization problem. The LP

optimization problem can be reformulated to an unconstrained

setting by including a penalty function (P(x)) in the objective

as fβ(x) = λx
T + βP(x), where x = 1 − 2c is the bipolar

codeword sent over the channel, c is the binary codeword,

and λ is the log-likelihood ratio vector of received codeword

y. This reformulated unconstrained optimization problem can

be solved with the well known projected gradient descent

(PGD) algorithm. PGD comprises of two steps - gradient and

projection, shown below,

rl = sl − γl fβl
(sl) gradient step (7)

sl+1 = ε(α(rl −0.5)) projection step (8)

where ε(·) is the sigmoid function and α controls the softness

of the projection. TPG decoder unfolds the iterations of

the gradient step of the PGD algorithm. The projection is

achieved with a non-linear activation function - sigmoid. The

parameters in the gradient and projection steps are chosen

as trainable parameters for the learning process to control

the stepsize and penalty in the gradient step as well as the

projection softness. The final parity check in the decoding is

a thresholding function which yields the estimated codeword

as ĉ = θ(sl+1). TPG decoder for a (3,6) regular LDPC was

shown to outperform belief propagation with a 0.5dB gain at

a BER=10−5.

Turbo codes are among the advanced channel coding

schemes that are employed in deep space communications,

3G/4G mobile communication in UMTS, and LTE standards.

However, to exploit Turbo codes for 6G it will need to

support significantly higher data rates at lower implementation

complexity. Previously proposed recurrent NN-based BCJR

algorithm relies on a large amount of training data and is

computationally complex. Incorporating domain knowledge

will ease the requirement of large training data as well as

can potentially minimize the number of trainable parameters

along with improved performance. TurboNet introduced in

[32] combines algorithmic knowledge from traditional max-

log maximum a posteriori (MAP) with deep NN. Each it-

eration of max-log-MAP algorithm is represented by a deep

NN-based decoding unit. The log-likelihood-ratio output of

the final decoding unit is subject to a non-linear activation

function (sigmoid) to constraint the output in the range of

[0,1]. The soft bit decisions are hard-decision thresholded

to obtain binary values. TurboNet with 3 decoding units for

Turbo (40,132) and (40,92) codes was shown to outperform

traditional MAP and max-log-MAP algorithms. TurboNet has

significantly fewer parameters (17.8K) and faster computa-

tion in contrast to 3.85M parameters of NN-based BCJR.

Additionally, TurboNet with only 3 decoding units exhibits

lower latency in comparison to traditional max-log-MAP with

5 iterations.

To summarize, Table II shows the model-driven approaches

discussed in this section along with their benchmarked ap-

proaches and performance metrics. Here, we showed a glimpse

of the current state-of-the-art model-driven signal processing

approaches that find a balance between principled and DL

approaches in terms of reliability and complexity. Such deep

unfolded approaches leverage the synergy between domain

knowledge and DL to deliver unprecedented capacity. Im-

parting domain knowledge offers predictable and interpretable

performance to model-driven approaches. Additionally, fewer

training parameters allow for faster training and convergence.

We envision such complexity reduction and reliable perfor-

mance to find prominence in realizing the ML at the edge

aspect of the 6G communication infrastructure.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This article discussed the state-of-the-art deep unfolded

signal processing approaches and motivated such techniques

to realize ML at the edge for 6G communication systems.

Computational simplicity, scalability, accelerated convergence,

small memory footprint, and high reliability are key to realize
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TABLE II: Review of promising direction towards ML at the edge

Deep unfolded
approaches

Benchmark approaches Implementation Platform Performance metrics

TISTA[24] LISTA, AMP, OAMP Intel Xeon(R) 6-core CPU Convergence rate

DeepRec[25] Gradient descent Quadcore 2.3 GHz CPU Reliability, computational efficiency

Unfolded
SI-canceller[26]

Polynomial canceller Xilinx Virtex-7 FPGA,
FDSOI ASIC

Quantization bitwidth, hardware efficiency,
hardware resource utilization

ADMM-Net[23] Sphere decoder, Zero-forcing
detector, SDR, DetNet

Intel Core i7-5820K CPU Runtime, reliability

MMNet[29] MMSE, V-BLAST, SDR,
AMP, DetNet, OAMPNet

GPU Complexity, reliability

TPG decoder[31] Belief propagation Not specified Reliability, SNR gain, complexity

TurboNet[32] MAP, max-log-MAP,
NN-based BCJR

NVIDIA GeForce GTX
100 Ti GPU

Complexity, reliability

the 6G communication objectives. TISTA [24] involved re-

quiring prior distribution of the original signal. MMNet [29]

considered the only source of randomness in noise, original

signal, and channel during the study. TurboNet [32] and TPG

decoder [31] were evaluated over AWGN channel. For larger

LDPC codes, the number of search steps can have a significant

impact on the receiver processing delay. Setting the number of

search steps as a learnable parameter rather than fixing them

as arbitrary can be an improvement over the TPG decoder.

The convergence rate and computational complexity of the

discussed approaches in presence of highly dynamic channel,

mobility, and data traffic conditions as in a 6G communication

network will need to be investigated further. Despite recent

studies in deep unfolded signal processing approaches, there

are still open problems that can be investigated in the future.

Rapid online learning. The 6G communication infras-

tructure opens a pandora’s box of wireless communication

challenges such as heterogeneous service requirements, dense

device deployments, 3D communication architecture, etc. The

physical layer approaches must therefore be rapid and adap-

tive to learn instantaneous and never-before-seen scenarios.

Few-shot learning and meta-learning are newly christened

paradigms in ML that enable exploiting prior knowledge in

allowing a model to learn from a few scenarios. A promising

direction towards rapid learning architectures for 6G would

be to integrate domain knowledge with few-shot/meta-learning

schemes to result in model-driven few-shot/meta-learning sig-

nal processing approaches.

Efficient unrolling. An imperative aspect to realize deep

unfolding is the efficiency of unrolling with respect to the

performance metrics. We use unrolling efficiency as an um-

brella term encompassing performance indicators such as the

convergence rate, computational complexity, inference time,

and reliability. Several factors affecting the unrolling efficiency

are the determination of trainable parameters, estimation and

mapping of any non-linear functions of the iterative algorithms

to equivalent activation functions, number of layers in the

unrolled network, loss functions, and training process. Mean-

while, the need for efficiently unrolled intelligent modules

will be pervasive across the 6G communication architecture.

Hence, careful determination of the unrolling factors is an

essential and vast research problem.

Interoperability and Security We expect O-RAN architec-

tures to possess intelligent unfolded signal processing modules

that can interface with the different O-RAN components

to ensure stable and reliable operation. Further, maintaining

openness and flexibility to support components from different

vendors is essential along with interoperability with legacy

systems. Additionally, when the solutions move towards open

architecture and with deep learning depending heavily on data

for training both offline and online, there will be an emergence

of new security concerns. Consequently, there needs to be a

deeper investigation into the security risks, new attack surfaces

involved, and mitigation plans to keep up with the integration

of deep learning based modules into core communication

systems.

Hardware-efficient ML at the edge. Edge learning will be

a primary enabler in 6G networks. Devices that can perform

self-optimization and act as intelligent decision agents without

relying on a centralized cloud/fog server will be key to attain

the undetectable latency and processing delay requirements

envisioned for 6G communications. The power consumption

of the devices serves as a key factor in attaining this capa-

bility. Hence, the intelligent architectures must be designed

to be lightweight (hardware-efficient) involving few trainable

parameters and layers while ensuring the desired reliability

and computational performances.

We believe and hope that several of these challenges will

be overcome and deep unfolded signal processing approaches

will become one of the key enablers for 6G communication

networks in the upcoming decade.
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