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Abstract—A novel cross-domain attentional multi-task archi-
tecture - xDom - for robust real-world wireless radio frequency
(RF) fingerprinting is presented in the work. To the best of our
knowledge, this is the first time such comprehensive attention
mechanism is applied to solve RF fingerprinting problem. In
this paper, we resort to real-world IoT WiFi and Bluetooth
(BT) emissions (instead of synthetic waveform generation) in a
rich multipath and unavoidable interference environment in an
indoor experimental testbed. We show the impact of the time-
frame of capture by including waveforms collected over a span of
months and demonstrate the same time-frame and multiple time-
frame fingerprinting evaluations. The effectiveness of resorting
to a multi-task architecture is also experimentally proven by
conducting single-task and multi-task model analyses. Finally, we
demonstrate the significant gain in performance achieved with
the proposed xDom architecture by benchmarking against a well-
known state-of-the-art model for fingerprinting. Specifically, we
report performance improvements by up to 59.3% and 4.91×
under single-task WiFi and BT fingerprinting respectively, and
up to 50.5% increase in fingerprinting accuracy under the multi-
task setting.

Index Terms—RF fingerprinting, temporal attention, spatio-
temporal attention, time-frequency attention. WiFi, Blueetooth

I. INTRODUCTION AND RELATED WORKS

A recent statistical survey forecasts more than 2 billion
WiFi 6 device shipments by the end of 2021 (i.e., over 50%
of all WiFi shipments) and that number will grow to 5.2
billion devices by 2025 [1]. According to a statistical report by
Statista, annual Bluetooth (BT) device shipments worldwide
stood at 4.7 billion units in 2021 [2]. The threat surfaces and
privacy concerns exacerbated by such accelerated device roll-
outs especially in densely populated areas such as hospitals,
airports, Federal security centers, etc., is unprecedented.

Wireless radio frequency (RF) fingerprinting has emerged as
an easy-to-deploy security scheme to counter and mitigate the
security issues arising from having unknown or prohibited RF
emitters sharing the wireless spectrum [3], [4]. RF fingerprint-
ing refers to the identification of wireless transmitters from
their received emissions based on inadvertent features embed-
ded in their waveforms. These inadvertent features emerge
from their internal RF circuitry. Due to the imperfections
entailed in the manufacturing process, the components of
the RF circuit such as the power amplifier (PA), low noise
amplifier (LNA), clock circuits, and local oscillators (LO),
among others introduce IQ imbalance, clock skew, out of
band (OOB) spurious leakage, which differs across the devices
even by the same manufacturer. These minuscule but unique

features form the RF signature of the wireless device which
with careful signal processing can be extracted without any
prior knowledge or induced impairments, by what is referred
to as a truly blind RF fingerprinting. Extracting these faint RF
signatures from commercial-off-the-shelf (COTS) Internet of
Things (IoT) devices from the same family in a blind manner
is a daunting task. Recent advances in deep learning have
made a significant impact on the wireless domain [5]. The
effectiveness of deep learning especially convolutional neural
network (CNN) in extracting unique device relevant features
from the RF emissions has led to an active research area in
this direction [4], [6], [7].

A CNN-based framework inspired by AlexNet [8] for
RF fingerprinting called ORACLE (Optimized Radio clAs-
sification through Convolutional neuraL nEtworks) is pro-
posed in [6]. Here, one-dimensional (1D) convolutional layers
are adopted to process the incoming complex in-phase and
quadrature (IQ) samples. The work shows 99% identification
of WiFi devices (16 Universal Software Radio Peripheral
(USRP) X310) with WiFi signal generated using software
from GNU Radio [9]. However, the main drawback of this
work is the utilization of transmitter level impairments and
the use of synthetically generated WiFi signals. We note
here that such artificially introduced impairments mask the
subtle hardware imperfections specific to the device which
are typically extracted for RF fingerprinting. Further, the
applicability and practicality of such artificial perturbations in
identifying already deployed non-programmable IoT emitters
in the present-day market are slim. Therefore, we state here
that in order to accelerate and promote the acceptance of RF
fingerprinting solutions in the present-day IoT infrastructure,
the fingerprinting systems must utilize the raw IQ samples
from the emissions without any additional perturbations in the
emitter (transmitter) side. The fewer preprocessing (of received
raw samples) steps, the faster the fingerprinting system.

A massive experimental study was presented in [7] to show
the effects of the wireless channel and IQ equalization on
WiFi and ADS-B device fingerprinting. The work involved
fingerprinting of 5000 ADS-B and 5117 WiFi devices to
show the impact of the device population on the performance.
The authors report the results on a custom software-generated
dataset transmitted over the air with up to 20 USRP family
of radios under different collection environments and a large-
scale dataset provided by DARPA including captures from
nearly 10k WiFi and ADS-B devices. The authors adopt
different CNN architectures to perform the fingerprinting and978-1-6654-3540-6/22 © 2022 IEEE



report accuracy gains with IQ equalization by up to 23%.
However, even partial equalization of the signals will distort
the pure fingerprint of the device. A long short-term memory
(LSTM) framework to extract the stochastic features from the
signal to watermark them into the original signal is proposed
in [10] to avoid data injection attacks. In [11], the common
Wifi waveform features unique to the IEEE802.11a/g/p such
as carrier frequency offset, scrambling seed pattern, sampling
frequency offset, and transient ramp-up/down periods are
leveraged to distinguish Wifi cards. The authors resorted to
software generation of Wifi stack on USRP software-defined
radios instead of real-world emissions. An unmanned aerial
vehicle (UAV) classification scheme is proposed in [12] where
the statistical features of the Wifi standard is utilized to
facilitate fingerprinting.

A CNN is used to identify 7 Zigbee devices using the time-
domain complex baseband error signal and attains a 92.29%
accuracy in [13]. However, the approach involves forward-
backward signal filtering with a fourth-order Butterworth filter
and a 2 MHz passband whereby the ideal signal is subtracted
from the transmission resulting in an error signal. An inter-
arrival approach was shown effective for WiFi fingerprinting
using a feed-forward neural network in [14]. However, these
approaches rely on protocol-specific processing and signal
modeling in contrast to our proposed approach that leverages
unprocessed raw IQ samples.

The works discussed so far rely on either protocol-specific
signal processing and/or transmitter-side artificial impair-
ments. However, such approaches rely on strong apriori as-
sumptions on the type of protocol that can be leveraged
to trace the device origin. We argue that to ensure ubiq-
uity, transparency, and robustness across capture times, the
fingerprinting approach must exploit raw unprocessed IQ
samples from passive signal reception across diverse wireless
protocols. In this work, for the first time, we introduce a
novel cross-domain attention mechanism for comprehensive
feature extraction by exploiting raw IQ samples collected
from a passive listener (radio). Additionally, we demonstrate
the performance gain achieved by the adoption of multi-task
architecture which jointly fingerprints WiFi and BT devices
while also classifying the wireless protocol. While multi-task
architecture has not been applied to fingerprinting, the utility
of multi-task architecture has been demonstrated in modulation
and protocol classification in [15], [16].

Attention mechanism was first introduced in the encoder-
decoder architectures of neural machine translation models in
natural language processing (NLP) [17]. Although attentional
learning is prevalent in NLP and computer vision [18], [19],
its adoption in wireless realm has been limited [20]. To best
of our knowledge, attention learning has not been applied
to the RF fingerprinting problem. In this work, for the first
time in literature, we intend to capture all domains - spatial,
temporal, and time-frequency - of subtle feature manifestations
present in the RF signal emissions to arrive at a comprehensive
attentional vector which would be robust across the type of
emission, time of capture, and other confounding factors. The

novelty and details of the proposed architecture is described
in detail in Section III

II. REAL WORLD RF SIGNAL COLLECTION

A. Data collection Framework

Keeping the practical relevance of RF fingerprinting in
mind, we opt for COTS IoT devices instead of generating
synthetic standard-compliant waveforms using SDRs using
GNU Radio or MATLAB as in majority of the literature. We
create a challenging RF dataset by choosing COTS IoT de-
vices. The emitters comprise total of 10 devices; 8 identically
manufactured Raspberry Pi4Bs and 2 identical laptops from
the same manufacturer (Lenovo). The Raspberry Pi4B results
in a complex device group since they use a Bluetooth and
WiFi transceiver combo chip (Cypress CYW43455) whereby
parts of the RF circuitry is shared between the Bluetooth and
WiFi modules including a shared single dual-band antenna. It
is worth noting that the Cypress chip is suitable for and hosted
in several industrial and smart home IoT devices. Similarly,
the Lenovo laptops possess a Intel Dual Band Wireless-AC
7260 combo chip supporting WiFi and Bluetooth. The chip
has two antenna ports - one reserved for WiFi while the other
is shared between WiFi and Bluetooth.

RaspberryPi4 
(Any Desired Wireless Emitter)

Passive RF listener
(stores IQ samples)

IQ Buffer
(Binary File)

Metadata for each Recording

Host PC
(User-defined software controls 

recording)

Fig. 1: Experimental data collection framework

In this section, we elaborate the data collection framework
to enable IoT device fingerprinting. The IoT emitter refers
to any IoT device that we desire to fingerprint from the
device-specific minuscule imperfections (signature) embedded
into the emitted waveform. The receiving radio scans a wide
frequency band within which the emitter transmits. The radio
we use for spectrum sensing and capture is a USRPX300
outfitted with a UBX160 daughtercard and VERT2450 antenna
for scanning the 2.4 GHz ISM band. The spectrum sensing
radio is centered at 2.414 GHz and receives samples at the
rate of 66.67 MS/s. The captures are saved as complex IQ
samples in a binary file with each recording sized at 40 MS.
For each capture, an associated metadata compliant with the
latest SigMF specifications and additional field extensions
for usability are recorded. The RF fingerprinting testbed
framework is shown in Fig.1 with the emitters and passive
listener located in the indoor laboratory amidst unavoidable
nearby emitters, human mobility, electronic hums, other indoor
obstacles forming a rich indoor multipath environment. Hence,
we consider this as a real-world in-the-wild data collection
environment. WiFi and Bluetooth are two ubiquitous wireless



Fig. 2: BT (left) and WiFi (right) signals from same device.

standards that are present in most of the IoT devices and
hence most commonly found in the RF spectrum. Accordingly,
instead of choosing either one of them or choosing any openly
available simulated and/or synthetically generated datasets, we
select both wireless standards for real-world data capture from
IoT device emissions.

IEEE802.11g WiFi emissions: The aforementioned IoT
devices are the source of the WiFi emissions which operates
with IEEE802.11g at the WiFi channel 8 centered at 2.447
GHz. We resort to unequalized and unfiltered raw IQ samples
to preserve the transmitter-specific features present in the
captured waveform to its entirety.

Bluetooth emissions: BT signal due to its frequency hop-
ping nature presents a challenging waveform category for
RF fingerprinting. The LO on the combo chip provides fast
frequency hopping (1600 hops/second) over the supported
BT channels. The emission of Bluetooth and WiFi from
same device is demonstrated as a time-frequency waterfall
spectrogram in Fig.2. The time-frequency view of the spectrum
clearly shows the frequency-hopping nature of the Bluetooth
waveform which aggravates the fingerprinting problem.

III. CROSS-DOMAIN ATTENTIONAL ARCHITECTURE

Attentional learning or attention mechanism is the neural
network’s attempt at mimicking the brain by selectively focus-
ing on few relevant areas of a given input. Visual attention has
demonstrated immense benefit in structural prediction tasks
such as image/video captioning, visual quizzing, etc [18], [19].
Recurrent neural network (RNN) on the other hand, extracts
the periodicity or the temporal pattern present in the input.
However, they do not perform well with long input sequences
since RNN units suffer from long-range dependency issues
due to vanishing/exploding gradients. Even LSTM cells tend to
become forgetful in learning long sentences. This is where the
introduction of the attention mechanism resolved this major
drawback in the NLP domain. Luong et al. [21] classify
attention into two categories; global and local depending on
where the attention is applied. In the context of NLP, the goal
of attention is to derive a context vector that captures relevant
source-side information to aid in the target word prediction.
Specifically, the authors resort to a simple concatenation layer
to concatenate the source-side context vector with the target
hidden state to generate an attentional hidden state. Another
impactful work was by Vaswani et al. [22] where a transformer
model is built upon self-attention without using sequence
aligned recurrent architectures. Self-attention also called intra-
attention refers to relating different positions of a single
sequence in order to compute a representation of the same
sequence. With attention, each element of the context vector is

given relative importance by employing weights allowing the
network to learn the most significant portions of sentences.

Inspired from these advances, we propose novel attentional
architecture - Cross-domain attentional model (xDom) (shown
in Fig.3) for RF fingerprinting. xDom is a multi-task architec-
ture in its construction implying it can perform joint multiple
predictions with a single neural network model for a given
input. The multi-task predictions can be any related tasks
that can be derived from the same input presentation. Here,
xDom is designed to perform RF fingerprinting and wireless
protocol classification. The architecture ingests 1024 complex
IQ samples in a 2D tensor format such that they are arranged as
rows of the 2D tensor. xDom adopts three domains of feature
extraction:

Input Signal
1024 IQ samples

Shared Module

SPATIO-TEMPORAL TF MODULE

TEMPORAL

CONCAT

xDom
Attentional 

vector

Emitter 
ID

Emitter 
Protocol

Task 1
RF Fingerprint Branch

TASK-2
Protocol Classification

Fig. 3: Proposed xDom multi-task architecture

1) Spatio-temporal features: xDom adopts a spatial filter-
ing module which is a bank of 1D and 2D convolu-
tional layers. There are two parallel 1D-convolutional
(conv1D) layers to process the ingested 1024 complex
IQ samples and another set of parallel 2D-convolutional
(conv2D) layers to spatially filter the input TF map.
The conv1D filter banks process the IQ input as a 2-
channel input to extract the local temporal correlations
from the two input channels. The conv2D filter bank
on the other hand spans across the 2D TF map of
size 65 × 1025 to extract the prominent spatial TF
features. The magnitude and phase of the TF map are
separately processed in each of the conv2D branches for
a comprehensive representation.

2) Temporal pattern: The input IQ tensor is fed through
a temporal module to extract any specific temporal
patterns arising from the nature of the waveform and/or
the hardware imperfections. The temporal module com-
prises a two-layer gated recurrent unit (GRU) with 132
hidden units. We resort to GRU instead of LSTM as
they are comparatively easy (faster) to train and utilize
only lesser memory. The output (xo) from the temporal
module is concatenated to the hidden state (h) resulting
in a concatenated vector (xh).

xh = vec (xo : h) (1)

where vec (·) and : are the vectorization and concate-
nation operator. Specifically, xDom adopts a many-to-1



mapping GRU such that it outputs a 1 × 132 vector
instead of a 1024 × 132 matrix. The hidden state is of
dimension 1× 132 resulting in a 1× 264 concatenated
vector.

3) Time-Frequency mapping: xDom utilizes a runtime
short-time Fourier transform (STFT) block which maps
the input IQ to 2D TF map xTF . The STFT performs
a 128-point FFT operation to produce a 65 × 1025
output TF map. The TF map is split into its component
magnitude and phase representations to pass it through
the conv2D filter bank.

Following the temporal module is a single layer linear feed-
forward neural network with hyperbolic tangent (tanh) acti-
vation and a softmax mapping which maps the concatenated
temporal pattern vector xh into an attentional scoring vector
(τ ) as in

τ = softmax
(
tanh

(
xh

))
(2)

Here, the softmax function yields the output score from the
feed-forward neural network output vector which essentially is
the temporal scoring. Intuitively, this scoring accounts for the
saliency captured by the temporal feature vector (xh). Now,
the cross-domain attentional vector (axdom) is derived by the
following operation,

axdom = vec
(
xIQ
1 : xIQ

2 : vec
(
xphase
3 : xmag

4

)
: τ

)
(3)

This comprehensive attentional feature vector captures the
essence of the different perturbations present in the RF emis-
sions and can now be leveraged to perform the relevant fin-
gerprinting classification. The attentional feature vector axdom
is split into two classifier branches which are simple feed-
forward neural network layers where the final output layer per-
forms softmax classification. Here, the two classifier modules
perform fingerprinting and wireless protocol classification.

IV. OVER-THE-AIR EXPERIMENTAL EVALUATION

A. Evaluation Setups

We evaluate the proposed xDom against a well-known CNN
model for RF fingerprinting [7] under real-world evaluation
setups. We select the Baseline CNN model in [7] and for ease
refer to it as AlshBaseline. The proposed xDom architecture
supports single and multi-task forms. However, in order to
be fair to the benchmark architecture which was originally
designed for singular task - fingerprinting (identifying device
origin), we resort to showing the evaluation results in the single
as well as multi-task settings. Both xDom and AlshBaseline
were trained by splitting the dataset into 70-15-15 training,
validation, and testing sets. The models were implemented in
the PyTorch framework and trained with stochastic gradient
descent (SGD) optimizer with a learning rate of 0.1 and
momentum of 0.9 for 150 epochs.

We test the models under single-task and multi-task settings
to show the performance gain achieved by xDom architecture.
Under single-task settings, the proposed model would only
have a single classifier branch which performs RF finger-
printing (emitter classification). Similarly, with regards to

the benchmark architecture, we set up two softmax classi-
fier branches to perform the multi-task emitter and protocol
classifications. Under single-task setting, the BT and WiFi
signals are separately used in the dataset whereas for multi-
task classification, the dataset contains equal proportion of BT
and WiFi signals.

The architectures will be evaluated under two broad sce-
narios: Train and Test Same Day (TTSD) and Train and Test
Mixed Days (TTMD). In the TTSD setup, the models will
be trained, validated, and tested with the dataset captured in
the same time frame. On the other hand, TTMD would have
dataset collected over a longer time frame (spanning months)
such that it would capture the environmental uncertainties over
multiple days and hence possess a richer and heterogeneous
data distribution.

B. Evaluation Results

xDom Performance: Figure 4 demonstrates the top-1 fin-
gerprinting accuracy and false alarm rates of the proposed
xDom architecture under the single and multi-task settings.
The single-task BT fingerprinting achieves a highest of 73%
accuracy and a lowest of 26% at low false alarm rates as shown
in Fig.4a. This can be resorted to the challenging frequency-
hopping nature of the BT emissions. On the other hand, the
WiFi fingerprinting achieves a 100% accuracy with a lowest
of 96% and negligible false alarms as seen in Fig.4b. These
single-task performances are significantly improved under the
multi-task setting (Fig.4c) which performs joint WiFi and BT
fingerprinting and protocol classification. The average top-1
fingerprinting accuracy under the multi-task setting is 84.3%.
We benchmark these performances against the AlshBaseline.

AlshBaseline Performance: Figure 5a shows that this
architecture fails to perform any usable BT fingerprinting.
Although, WiFi fingerprinting (Fig.5b) of shows some im-
provement over BT (Fig.5a), it has very high false alarm rates.
Even in the case of the AlshBaseline Fig.5c, it can be observed
that the performance of the multi-task version improves with
higher fingerprinting accuracy.

The same performance trend can be seen with the richer
dataset under the TTMD setup as shown in Fig.6 and Fig.7.
BT fingerprinting is equally poor as with TTSD with the
AlshBaseline architecture (Fig.7a). However, it is evident from
Fig.7b that by presenting a richer diverse dataset under the
TTMD setup, we note significant performance improvement
with the WiFi fingerprinting showing considerably fewer false
alarms and improved fingerprinting accuracy in contrast to
Fig.5b.

xDom vs AlshBaseline: As summarized in Table I, the
proposed xDom attains 45.95% and 59.3% higher accuracy
in WiFi fingerprinting under the TTSD and TTMD settings
respectively in contrast to the AlshBaseline. Similarly, BT
fingerprinting performs 4.91× and 2× higher than the Alsh-
Baseline under TTSD and TTMD setups respectively. Under
the multi-task setting in Table II, xDom scores a fingerprinting
accuracy of 84.3% and 65.3% with the TTSD and TTMD
setups respectively in contrast to just 60.1% (TTSD) and



(a) STL: BT fingerprinting (b) STL: WiFi fingerprinting (c) MTL: joint BT and WiFi fingerprinting

Fig. 4: TTSD: Proposed xDom architecture under single-task (BT and WiFi) and multi-task (WiFi + BT) settings

(a) STL: BT fingerprinting (b) STL: WiFi fingerprinting (c) MTL: joint BT and WiFi fingerprinting

Fig. 5: TTSD: Benchmark AlshBaseline architecture under single-task (BT and WiFi) and multi-task (WiFi + BT) settings

(a) STL: BT fingerprinting (b) STL: WiFi fingerprinting (c) MTL: joint BT and WiFi fingerprinting

Fig. 6: TTMD: Proposed xDom architecture under single-task (BT and WiFi) and multi-task (WiFi + BT) settings

TABLE I: Performance of xDom under single-task setting.

Scenario Waveform Top-1 Fingerprinting Accuracy
CrossDom AlshBaseline

TTSD WiFi 0.991 0.679
BT 0.487 0.099

TTMD WiFi 0.991 0.622
BT 0.478 0.239

43.4% (TTMD) attained with the AlshBaseline.These signifi-
cant performance gains over AlshBaseline exhibit the effec-
tiveness of adopting attentional learning with the proposed
xDom architecture which analyzes and extracts features from
diverse dataset domains.

The multi-task architecture evidently presents improved
joint WiFi and BT fingerprinting accuracy under both evalua-
tion setups suggesting that the model learns a more intuitive
feature presentation by incorporating diverse protocol emis-

sions allowing it to distinctly identify the innate hardware
perturbations that contribute to the device fingerprint. While
we have shown the effectiveness of xDom in single-task
and multi-task setting, the advantage gained by adopting a
multi-task architecture will greatly benefit the next generation
of wireless systems comprising devices with heterogeneous
wireless standards.

V. CONCLUSION AND FUTURE WORK

We presented xDom - a first-of-its-kind cross-domain atten-
tional multi-task architecture for enhancing RF fingerprinting
performance. The novel attention mechanism which encom-
passes all domains of the signal manifestations - Spatio-
temporal, temporal, and time-frequency - was elaborated in-
depth. The gain in fingerprinting accuracy with the attention
mechanism was experimentally demonstrated by comparing
against a well-known CNN-based fingerprinting model. Fur-
thermore, the effectiveness of employing the multi-task model



(a) STL: BT fingerprinting (b) STL: WiFi fingerprinting (c) MTL: joint BT and WiFi fingerprinting

Fig. 7: TTMD: Benchmark AlshBaseline architecture under single-task (BT and WiFi) and multi-task (WiFi + BT) settings

TABLE II: Performance of xDom under multi-task setting.

Scenario Top-1 Protocol Identification Accuracy Top-1 fingerprinting Accuracy
CrossDom AlshBaseline CrossDom AlshBaseline

TTSD 1.0 0.96 0.843 0.601
TTMD 1.0 0.998 0.653 0.434

was depicted by conducting evaluations under single-task
settings. Finally, the analyses were carried out under same
(TTSD) and different time-frame settings (TTMD) to study
the impact of variability in wireless channels across different
time spans. In the future, we plan on improving the single-
task BT fingerprinting by incorporating robustness enhancing
techniques such as longer-duration IQ samples to overcome
the frequency hopping challenge. Additionally, we also plan
on curating the vast dataset of real-world IoT emissions for
open release to benefit the wider research community. The
future work will also incorporate additional evaluations in
challenging scenarios.
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