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ABSTRACT 

 

Most waveforms operating on Software Defined Radios 

(SDR) are actually ‘firmware’ defined implementations with 

significant elements operating in the FPGA on closed 

platforms. This diminishes the full potential of SDR in terms 

of rapid development time cycles, accessibility to waveform 

code, and adaptable rapid reconfiguration. We address the 

challenges of rapid waveform development on SDR using 

the Digital Video Broadcast Satellite (DVB-S) standard as a 

case study with a true software defined implementation 

where all I/Q processing is performed on an Intel processor 

in conjunction with low-cost Ettus B205mini and Nuand 

bladeRF SDRs. We distill the waveform to core functional 

components and sequence the implementation into “sprints” 

while maintaining end-to-end functionality at each iteration.  

Innovations include strategic use of machine code for 

computational intensive operations and efficient multi-

thread management. Our approach yielded a full transceiver 

implementation within 2 man-weeks using only the 

published specification for reference. The transmitter was 

tested for interoperability with a consumer satellite receiver.  

CPU usage on an i7 processor was approximately 22%, with 

a memory usage of 16MB out of the 8GB available. The 

mean latency of the system is approximately 50 

milliseconds. A similar test showed that the system latency 

is affected by symbol rate and decreases as the rate is 

increased. When the symbol rate is set to 15 

Msymbols/sec, the latency drops to 17 milliseconds. 

 

1. INTRODUCTION 

 

Early promises of software defined radios (SDR) included 

accelerated development timelines, greater accessibility to 

waveforms, and ease of modification. However, the general-

purpose processors of the 1990’s were not powerful enough 

to support complex waveforms that have demanding digital 

signal processing (DSP) algorithms.  This led to 

implementations with firmware emphasis where most 

complex processing was performed in a FPGA. A drawback 

of this FPGA trend was lack of portability across different 

FPGA products, which results in closed systems, longer 

development times, and inability to adapt waveform code 

on-the-fly. Recent improvements in general purpose 

processors (GPP) to accommodate graphics processing 

allow GPPs to handle more DSP functions and thus enabling 

the original potential of SDR. As a case study for this GPP-

based software approach, we present a 100% software 

implementation of a Digital Video Broadcast Satellite 

(DVB-S) standard  transceiver on low-cost hardware with all 

I/Q processing performed in a general-purpose processor 

[1]. 

 A practical challenge for affordability was to limit the 

total hardware costs to less than $3000 for a laboratory 

demonstration. This affordability constraint encouraged 

developers to seek innovative technical optimizations while 

working within the constraints of the low-cost hardware and 

processing-intensive operations of forward error correction 

(FEC) with the GPP. Government waveform efforts typically 

follow a traditional requirements-based acquisition cycle. 

We overcame this slower approach by adopting an agile-

based development approach. 

 Our methodology to waveform development starts by 

distilling the waveform into its core functional components. 

We then simplify or eliminate blocks to implement an initial 

minimal functional prototype.  From here, we incrementally 

add components and adapt existing elements to match the 

configurations defined in the waveform specification. 

 To achieve efficient operations on a GPP platform, we 

implement targeted functions in assembly code. Similarly, 

we divided the waveform code into multiple threads to 

equalize multi-core utilization. The Viterbi decoder, filtering 

and carrier recovery proved to be the most difficult to 

optimize.  Interoperability was demonstrated using our 

transmitter with an off-the-shelf Coolsat DVB-S satellite 

receiver.  We quantified bit error rate performance, CPU 

usage of transmitter and receiver signal flows, and measured 

latency. 

 We have shown that the GPP platform can achieve 

performance previously reserved for firmware 

implementations. Our agile-based development process 

yields waveforms significantly faster than a traditional 



requirements-based approach and proven through 

interoperability with off-the-shelf devices.  The structure of 

this paper is as follows: we summarize existing software 

implementations of the DVB family and present our DVB-S 

implementation. Interoperability validation is described 

followed by benchmarking performance tests. 

 

2. BACKGROUND 

 

A literature search indicates several SDR implementations 

of DVB-related waveforms [2-4]. Most of the papers focus 

on DVB-Terrestrial (DVB-T). DVB-T is like DVB-S with 

similar data framing and error correction. Modulation is 

more complex with orthogonal frequency division 

multiplexing (OFDM) in DVB-T compared to QPSK in 

DVB-S. 

 Our implementation shares several similarities with [2] 

including 100% software implementation, leveraging 

multiple threads to optimize performance, and use of SIMD 

code to parallelize some functions. A key difference is in the 

multi-threading model. We are breaking up the processing 

into separate threads that pass data between each thread. 

They are using a thread pool with a main thread directing the 

individual threads to awaken when there is input available to 

process. In our approach, there is no main thread. Instead, 

the inter-thread buffers manage blocking/unblocking thread 

execution when an input/output buffer is available. Our 

approach should simplify waveform development as there is 

no need to set up the main thread and implement the logic 

for determining when data is ready for the threads. This 

logic is effectively implemented locally by the inter-thread 

buffers. The thread-management code is contained in a 

library that never needs to be modified by the waveform 

developer. 

 Their use of an older processor in [2] most likely limits 

SIMD to SSE while our more modern processor enables 

Advanced Vector Extensions (AVX). They are using multi-

threading functions. We have only employed this technique 

for more complicated waveforms and found it unnecessary 

for DVB-S. Finally, we implemented a complete real-time 

receiver, while they created an offline receiver. 

 

3. IMPLEMENTATION 

 

The transceiver is based on DVB-S standard EN 300 421 

V1.1.2 (1997-08). The transmitter block diagram is shown in 

Figure 1. A video file is encoded by VLC producing 

MPEG2 transport stream frames. Null frames are inserted in 

this stream as needed to adapt the bit rate of the video 

stream to the bit rate of the DVB-S transmitter. The 

randomizer operates on 8 MPEG2 frames at a time. The first 

byte in an MPEG2 frame is a synchronization marker. These 

synchronization markers are used directly by DVB-S for its 

own synchronization purposes. The synchronization byte in 

the first MPEG2 frame of each randomizer frame is inverted 

to indicate the start of the randomizer frame. 

 

 
Figure 1. DVB-S Transmitter Block Diagram 

 Each 188-byte MPEG2 frame is Reed-Solomon 

encoded producing 204-byte frames. Frames are interleaved 

using a convolutional interleaver. The byte stream output 

from the interleaver is converted to a bit stream, most 

significant bit (MSB) first, and convolutionally encoded. 

The output of the convolutional encoder is punctured by the 

selected rate, either 1/2, 2/3, 4/5, 5/6, or 7/8. The encoded 

bit streams are QPSK modulated, RRC filtered, and 

transmitted by the radio. 

 The DVB-S receiver is shown in Figure 2. The system 

first removes DC offset introduced by the transmitter and 

receiver. This is performed twice, before the carrier 

synchronization to remove the receiver induced offset, and 

again after carrier synchronization to remove the transmitter 

induced component. The process is performed on blocks of 

4096 consecutive samples. The average is calculated and 

then subtracted from each sample. 

 

 
Figure 2. DVB-S Receiver Block Diagram 

 Automatic gain control (AGC) is similarly performed 

on blocks of 4096 samples to normalize the amplitude of the 

received signal. This is required to prevent a variation in 

carrier synchronization and symbol synchronization 

response time with the received signal level. Each sample is 

divided by the root mean squared (RMS) amplitude of the 

entire 4096 sample block. 

 Next, a phase-locked loop (PLL) removes the 

phase/frequency offset from the signal. The phase/frequency 

error is calculated by taking the 4th power of each input 

sample. This produces a strong impulse at 4x the frequency 

offset. This step initially showed high computation cost. 

Originally, this PLL was calculating the phase error and 

updating the feedback loop on every sample coming in. This 



resulted in an update rate of 25 million samples/second. 

Since the frequency offset is minor compared to the sample 

rate, it is not necessary to update the PLL feedback loop for 

every sample. The PLL was redesigned to calculate the 

phase error on a block of samples and then update the 

feedback loop for each block. The block size is currently set 

to 8 samples. 

 The same technique was applied to the symbol timing 

PLL. In this case, the maximum sample rate offset is smaller 

than the maximum frequency offset. Therefore, the block 

size can be made larger resulting in a greater reduction in 

computations. The block size is currently set to 1024 

samples. 

 A similar approach is used for symbol synchronization. 

By squaring each sample, a strong frequency component is 

identified at the symbol rate. A PLL locks onto this 

frequency and optimal symbol timing is determined based 

on the phase of the PLL numerically controlled oscillator 

(NCO). A Root-Raised-Cosine (RRC) filter is again used to 

interpolate at the optimal time. Here, the RRC filter dot 

product operation is implemented in assembly code. 

 At this point, the symbols are QPSK demodulated 

producing two bit streams. These bits have the values +1/-1. 

The two bit streams are de-punctured which inserts 0 

wherever a bit was punctured. The de-punctured bit streams 

are Viterbi decoded producing a single output bit stream. 

Since a QPSK constellation is symmetric over a 90-degree 

rotation, there may be a 90-degree phase ambiguity in the 

received symbols. To correct for this, the constellation is 

rotated periodically until synchronization is detected by the 

Viterbi decoder. Also, the de-puncturing must be correctly 

aligned with the incoming bit streams. To obtain the proper 

alignment, the de-puncturing is periodically shifted with 

respect to the incoming bit stream until the Viterbi decoder 

detects synchronization. The output bit stream from the 

Viterbi decoder is searched to locate the MPEG2 sync bytes. 

Once found, the bit stream is converted to bytes and passed 

into the de-interleaver. De-interleaved code-words are 

decoded by the Reed-Solomon decoder and de-randomized. 

The de-randomized code-words are sent to VLC to display 

the video. 

 

4. LIMITATIONS 

 

This DVB-S implementation has several limitations related 

to synchronization stability. Synchronization loss occurs 

intermittently with data transfers exceeding approximately 

900,000 MPEG2 frames. When synchronization loss occurs, 

frames are dropped and bit errors are incurred in some 

received frames as synchronization stabilizes.  Furthermore, 

these low-cost SDR platforms have limited hardware 

automatic gain control (AGC) functionality. To compensate 

for the limited AGC, calibration of transmitter and receiver 

gain is consequently sensitive and requires frequent tuning.  

5. TEST PLATFORM 

 

We have tested the DVB-S transceiver on software defined 

radios in cabled RF and over-the-air (OTA) wireless 

configurations.  To demonstrate interoperability, we 

transmitted a video file to a commercial off the shelf 

(COTS) Coolsat receiver connected to a television. Table 1 

lists configuration parameters necessary to recreate the 

system model. 

 Note that the bladeRF [5] is operating at 1GHz which is 

the intermediate frequency (IF) of the Satellite TV receiver. 

A label on the Coolsat receiver states that 950-2150MHz is 

the IF range.  In a real system, there would be an 

upconverter to the KU band (to 11.7 to 12.7GHZ) at the 

transmitter.  At the receiver (Coolsat), there would be a Ku 

downconverter.  In this case we are only operating at 1GHz 

which is directly received by the Coolsat. 

 The low noise block (LNB) downconverter input also 

has 18 volts DC component.  This DC voltage powers the 

downconverter when it is used. It is important to disable this 

DC voltage or use a DC blocking capacitor when directly 

connect this to the bladeRF SDR.  At one point, we directly 

connected an attenuator to the LNB input and then 

connected it to the SDR which led to the attenuator getting 

hot to the touch. There is an option to disable the 18V DC 

which would allow direct connection. 

 The RF out of the satellite receiver connects directly to 

an old television.  The LNB Input port of the receiver is 

connected to a coaxial cable. Soldering was required to 

connect the coaxial cable’s center wire and ground to the 

antenna connector. We have found that the receiver 

sensitivity is good enough that the system receives video 

without the antenna on the Coolsat receiver. 

 

Table 1. Components Used in Demonstration System 

 

Item Description 

DVBS receiver Coolsat 5000 Platinum 

DVBS specification  EN 300 421 V1.1.2 (1997-08) 

SDR platforms Tested with BladeRF [5] and 

USRP B205MINI [6] 

Linux distribution Ubuntu 14.04.3 

Linux kernel version 3.13.0 

Software dependencies • VLC 2.1.6-0-gea01d28 

• libbladerf 

• libuhd 

Antenna OmniLOG 70600 Antenna 

Receiver gain Between 20dB and 40dB 

Transmitter gain Between 20dB and 35dB 

Samples/symbol 2.25M 

Sample rate 33.75M 

Frame size 188 Bytes 

 



6. RESULTS 

 

Benchmarking tests included CPU usage, bit error rate, and 

latency. The Linux utility, htop, was used to monitor CPU 

usage of the transmitter software alone, the receiver alone, 

and both the transmitter and receiver running 

simultaneously. CPU usage was measured on an Intel Core 

i7 and i3, as indicated in Table 2. 

 
Table 2. htop DVBS CPU Usage Results 

Laptop Features 

HTop Reported CPU 

Usage out of 100% 

Tx/Rx Tx Rx 

Dell 

Precision 

M2800 

Intel® Core™ i7-

4610M CPU@3GHz 

8GB RAM, 4CPUs 

22% 8% 16% 

Lenovo 

L530 

Intel® Core™ i3-

2348M CPU@2.3GHz 

4GB RAM, 4CPUs 

50% 24% 35% 

 

Note that for quad-core processors, htop typically reports 

results out of a maximum of 400% based on the utilization 

of four cores.  Here, results are normalized to 100% 

maximum. On average, the overall CPU usage for the entire 

system is relatively low. On a Dell Precision M2800 with an 

Intel i7 processor with 4 CPUs, the lowest usage percentage 

we achieved was 22% for the transceiver, 8% for the 

transmitter only, and 14% for the receiver only. 

Additionally, the RAM usage on the same platform 

remained constant at 0.2%, which is a total usage of 16MB 

out of the remaining 8GB. 

 Processor usage increases with symbol rate as shown in 

Figure 3. Normalized CPU usage increases as the symbol 

rate is increased from 5.5 to 15.5 symbols. Note that the 

transmitter usage is shown in blue and the receiver usage is 

shown in orange. 

 

Figure 3.  DVB-S Htop CPU Usage vs Symbol Rate 

 

BER tests were conducted by measuring bits in error from 

fully synchronized MPEG2 frames at the receiver.  Mock 

MPEG frames 188 bytes in length were transmitted in 2ms 

bursts with 10 frames/burst over a wired and wireless link.  

Under stable synchronization, 13 repetitions of 90,000 

bursts (900,000 total frames) were received with no 

measured BER.  In tests where synchronization was 

unstable, measured BER was on the order of 4.5E-5. 

Commercial DVB-S strives for BER on the order of 1E-10.  

To statistically measure levels that low, approximately 1E12 

bits needs to be transmitted continuously. We were unable to 

transmit that much data at one time and maintain 

synchronization. 

 System latency is defined as the time between 

generating a MPEG2 frame and decoding a received 

MPEG2 frame, as shown in Figure 4. Table 3 shows the 

mean latency in the DVB-S transceiver in a wired 

environment (coaxial cable connecting the Tx and Rx RF 

ports) with increasing test burst sizes and a constant period.  

 
Table 3. DVBS Transceiver Latency (Wired) 

Bursts Period Mean Latency (µs) 
Standard Deviation 

(µs) 

100 

100 

49172 284 

1000 49117 196 

10000 49242 188 

 

 
Figure 4. Latency Measurement Endpoints 

The mean latency of our system hovers around 50 

milliseconds despite the increase in the number of bursts that 

are sent. Although increasing burst size has no effect on the 

mean latency, it does reduce standard deviation of reported 

latency as more are sent. We further compare the mean 

latency of the DVB-S system to the set symbol rate shown in 

Figure 5 below. 
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Figure 5. DVB-S Latency vs. Symbol Rate 

The set symbol rate directly effects the mean latency of the 

system. As symbol rate is increased from 5.5 to 15.5 

Msymbols, the mean latency decreases from 50ms to 

approximately 17ms. 

 

7. CONCLUSION 

 

We presented software implementation of a DVB-S 

transmitter and receiver where all I/Q processing is 

performed in GPP.  Key elements include taking advantage 

of multiple processors through efficient threading and 

optimal usage of AVX instructions.  Our agile approach to 

waveform development increases productivity and lends 

itself to faster timelines and real-time troubleshooting due to 

the flexibility of an all software implementation.  Our 

approach has been successfully applied across multiple 

commercial and military waveforms.   

 We successfully showed that real-time operation of both 

transmitter and receiver I/Q digital processing is possible on 

an i3 or better processor.  Benchmark results indicate peak 

normalized CPU usage at 50% for second generation i3 

mobile processor, and 22% for a fourth generation i7 mobile 

processor.  Bit error performance was comparable to the 

DVB-S waveform specification requirements when stable 

synchronization is achieved, with system latencies measured 

between 50ms and 17ms depending on the symbol rate.   
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