
SOFTWARE DEFINED RADIO IMPLEMENTATION OF A DVB-S

TRANSCEIVER

Ashwin Amanna, James Bohl, Zachary Goldsmith (ANDRO Computational Solutions,

LLC, Rome, NY, USA; aamanna@androcs.com, jbohl@androcs.com,

zgoldsmith@androcs.com); Michael Gudaitis, Benjamin Kraines, Robert DiMeo, William

Lipe, Richard Butler II (Air Force Research Lab RIT, Rome, NY, USA;

michael.gudaitis@us.af.mil, benjamin.kraines.1@us.af.mil, robert.dimeo@us.af.mil,

william.lipe@us.af.mil, richard.butler.10@us.af.mil)

ABSTRACT

Most waveforms operating on Software Defined Radios

(SDR) are actually ‘firmware’ defined implementations with

significant elements operating in the FPGA on closed

platforms. This diminishes the full potential of SDR in terms

of rapid development time cycles, accessibility to waveform

code, and adaptable rapid reconfiguration. We address the

challenges of rapid waveform development on SDR using

the Digital Video Broadcast Satellite (DVB-S) standard as a

case study with a true software defined implementation

where all I/Q processing is performed on an Intel processor

in conjunction with low-cost Ettus B205mini and Nuand

bladeRF SDRs. We distill the waveform to core functional

components and sequence the implementation into “sprints”

while maintaining end-to-end functionality at each iteration.

Innovations include strategic use of machine code for

computational intensive operations and efficient multi-

thread management. Our approach yielded a full transceiver

implementation within 2 man-weeks using only the

published specification for reference. The transmitter was

tested for interoperability with a consumer satellite receiver.

CPU usage on an i7 processor was approximately 22%, with

a memory usage of 16MB out of the 8GB available. The

mean latency of the system is approximately 50

milliseconds. A similar test showed that the system latency

is affected by symbol rate and decreases as the rate is

increased. When the symbol rate is set to 15

Msymbols/sec, the latency drops to 17 milliseconds.

1. INTRODUCTION

Early promises of software defined radios (SDR) included

accelerated development timelines, greater accessibility to

waveforms, and ease of modification. However, the general-

purpose processors of the 1990’s were not powerful enough

to support complex waveforms that have demanding digital

signal processing (DSP) algorithms. This led to

implementations with firmware emphasis where most

complex processing was performed in a FPGA. A drawback

of this FPGA trend was lack of portability across different

FPGA products, which results in closed systems, longer

development times, and inability to adapt waveform code

on-the-fly. Recent improvements in general purpose

processors (GPP) to accommodate graphics processing

allow GPPs to handle more DSP functions and thus enabling

the original potential of SDR. As a case study for this GPP-

based software approach, we present a 100% software

implementation of a Digital Video Broadcast Satellite

(DVB-S) standard transceiver on low-cost hardware with all

I/Q processing performed in a general-purpose processor

[1].

 A practical challenge for affordability was to limit the

total hardware costs to less than $3000 for a laboratory

demonstration. This affordability constraint encouraged

developers to seek innovative technical optimizations while

working within the constraints of the low-cost hardware and

processing-intensive operations of forward error correction

(FEC) with the GPP. Government waveform efforts typically

follow a traditional requirements-based acquisition cycle.

We overcame this slower approach by adopting an agile-

based development approach.

 Our methodology to waveform development starts by

distilling the waveform into its core functional components.

We then simplify or eliminate blocks to implement an initial

minimal functional prototype. From here, we incrementally

add components and adapt existing elements to match the

configurations defined in the waveform specification.

 To achieve efficient operations on a GPP platform, we

implement targeted functions in assembly code. Similarly,

we divided the waveform code into multiple threads to

equalize multi-core utilization. The Viterbi decoder, filtering

and carrier recovery proved to be the most difficult to

optimize. Interoperability was demonstrated using our

transmitter with an off-the-shelf Coolsat DVB-S satellite

receiver. We quantified bit error rate performance, CPU

usage of transmitter and receiver signal flows, and measured

latency.

 We have shown that the GPP platform can achieve

performance previously reserved for firmware

implementations. Our agile-based development process

yields waveforms significantly faster than a traditional

requirements-based approach and proven through

interoperability with off-the-shelf devices. The structure of

this paper is as follows: we summarize existing software

implementations of the DVB family and present our DVB-S

implementation. Interoperability validation is described

followed by benchmarking performance tests.

2. BACKGROUND

A literature search indicates several SDR implementations

of DVB-related waveforms [2-4]. Most of the papers focus

on DVB-Terrestrial (DVB-T). DVB-T is like DVB-S with

similar data framing and error correction. Modulation is

more complex with orthogonal frequency division

multiplexing (OFDM) in DVB-T compared to QPSK in

DVB-S.

 Our implementation shares several similarities with [2]

including 100% software implementation, leveraging

multiple threads to optimize performance, and use of SIMD

code to parallelize some functions. A key difference is in the

multi-threading model. We are breaking up the processing

into separate threads that pass data between each thread.

They are using a thread pool with a main thread directing the

individual threads to awaken when there is input available to

process. In our approach, there is no main thread. Instead,

the inter-thread buffers manage blocking/unblocking thread

execution when an input/output buffer is available. Our

approach should simplify waveform development as there is

no need to set up the main thread and implement the logic

for determining when data is ready for the threads. This

logic is effectively implemented locally by the inter-thread

buffers. The thread-management code is contained in a

library that never needs to be modified by the waveform

developer.

 Their use of an older processor in [2] most likely limits

SIMD to SSE while our more modern processor enables

Advanced Vector Extensions (AVX). They are using multi-

threading functions. We have only employed this technique

for more complicated waveforms and found it unnecessary

for DVB-S. Finally, we implemented a complete real-time

receiver, while they created an offline receiver.

3. IMPLEMENTATION

The transceiver is based on DVB-S standard EN 300 421

V1.1.2 (1997-08). The transmitter block diagram is shown in

Figure 1. A video file is encoded by VLC producing

MPEG2 transport stream frames. Null frames are inserted in

this stream as needed to adapt the bit rate of the video

stream to the bit rate of the DVB-S transmitter. The

randomizer operates on 8 MPEG2 frames at a time. The first

byte in an MPEG2 frame is a synchronization marker. These

synchronization markers are used directly by DVB-S for its

own synchronization purposes. The synchronization byte in

the first MPEG2 frame of each randomizer frame is inverted

to indicate the start of the randomizer frame.

Figure 1. DVB-S Transmitter Block Diagram

 Each 188-byte MPEG2 frame is Reed-Solomon

encoded producing 204-byte frames. Frames are interleaved

using a convolutional interleaver. The byte stream output

from the interleaver is converted to a bit stream, most

significant bit (MSB) first, and convolutionally encoded.

The output of the convolutional encoder is punctured by the

selected rate, either 1/2, 2/3, 4/5, 5/6, or 7/8. The encoded

bit streams are QPSK modulated, RRC filtered, and

transmitted by the radio.

 The DVB-S receiver is shown in Figure 2. The system

first removes DC offset introduced by the transmitter and

receiver. This is performed twice, before the carrier

synchronization to remove the receiver induced offset, and

again after carrier synchronization to remove the transmitter

induced component. The process is performed on blocks of

4096 consecutive samples. The average is calculated and

then subtracted from each sample.

Figure 2. DVB-S Receiver Block Diagram

 Automatic gain control (AGC) is similarly performed

on blocks of 4096 samples to normalize the amplitude of the

received signal. This is required to prevent a variation in

carrier synchronization and symbol synchronization

response time with the received signal level. Each sample is

divided by the root mean squared (RMS) amplitude of the

entire 4096 sample block.

 Next, a phase-locked loop (PLL) removes the

phase/frequency offset from the signal. The phase/frequency

error is calculated by taking the 4th power of each input

sample. This produces a strong impulse at 4x the frequency

offset. This step initially showed high computation cost.

Originally, this PLL was calculating the phase error and

updating the feedback loop on every sample coming in. This

resulted in an update rate of 25 million samples/second.

Since the frequency offset is minor compared to the sample

rate, it is not necessary to update the PLL feedback loop for

every sample. The PLL was redesigned to calculate the

phase error on a block of samples and then update the

feedback loop for each block. The block size is currently set

to 8 samples.

 The same technique was applied to the symbol timing

PLL. In this case, the maximum sample rate offset is smaller

than the maximum frequency offset. Therefore, the block

size can be made larger resulting in a greater reduction in

computations. The block size is currently set to 1024

samples.

 A similar approach is used for symbol synchronization.

By squaring each sample, a strong frequency component is

identified at the symbol rate. A PLL locks onto this

frequency and optimal symbol timing is determined based

on the phase of the PLL numerically controlled oscillator

(NCO). A Root-Raised-Cosine (RRC) filter is again used to

interpolate at the optimal time. Here, the RRC filter dot

product operation is implemented in assembly code.

 At this point, the symbols are QPSK demodulated

producing two bit streams. These bits have the values +1/-1.

The two bit streams are de-punctured which inserts 0

wherever a bit was punctured. The de-punctured bit streams

are Viterbi decoded producing a single output bit stream.

Since a QPSK constellation is symmetric over a 90-degree

rotation, there may be a 90-degree phase ambiguity in the

received symbols. To correct for this, the constellation is

rotated periodically until synchronization is detected by the

Viterbi decoder. Also, the de-puncturing must be correctly

aligned with the incoming bit streams. To obtain the proper

alignment, the de-puncturing is periodically shifted with

respect to the incoming bit stream until the Viterbi decoder

detects synchronization. The output bit stream from the

Viterbi decoder is searched to locate the MPEG2 sync bytes.

Once found, the bit stream is converted to bytes and passed

into the de-interleaver. De-interleaved code-words are

decoded by the Reed-Solomon decoder and de-randomized.

The de-randomized code-words are sent to VLC to display

the video.

4. LIMITATIONS

This DVB-S implementation has several limitations related

to synchronization stability. Synchronization loss occurs

intermittently with data transfers exceeding approximately

900,000 MPEG2 frames. When synchronization loss occurs,

frames are dropped and bit errors are incurred in some

received frames as synchronization stabilizes. Furthermore,

these low-cost SDR platforms have limited hardware

automatic gain control (AGC) functionality. To compensate

for the limited AGC, calibration of transmitter and receiver

gain is consequently sensitive and requires frequent tuning.

5. TEST PLATFORM

We have tested the DVB-S transceiver on software defined

radios in cabled RF and over-the-air (OTA) wireless

configurations. To demonstrate interoperability, we

transmitted a video file to a commercial off the shelf

(COTS) Coolsat receiver connected to a television. Table 1

lists configuration parameters necessary to recreate the

system model.

 Note that the bladeRF [5] is operating at 1GHz which is

the intermediate frequency (IF) of the Satellite TV receiver.

A label on the Coolsat receiver states that 950-2150MHz is

the IF range. In a real system, there would be an

upconverter to the KU band (to 11.7 to 12.7GHZ) at the

transmitter. At the receiver (Coolsat), there would be a Ku

downconverter. In this case we are only operating at 1GHz

which is directly received by the Coolsat.

 The low noise block (LNB) downconverter input also

has 18 volts DC component. This DC voltage powers the

downconverter when it is used. It is important to disable this

DC voltage or use a DC blocking capacitor when directly

connect this to the bladeRF SDR. At one point, we directly

connected an attenuator to the LNB input and then

connected it to the SDR which led to the attenuator getting

hot to the touch. There is an option to disable the 18V DC

which would allow direct connection.

 The RF out of the satellite receiver connects directly to

an old television. The LNB Input port of the receiver is

connected to a coaxial cable. Soldering was required to

connect the coaxial cable’s center wire and ground to the

antenna connector. We have found that the receiver

sensitivity is good enough that the system receives video

without the antenna on the Coolsat receiver.

Table 1. Components Used in Demonstration System

Item Description

DVBS receiver Coolsat 5000 Platinum

DVBS specification EN 300 421 V1.1.2 (1997-08)

SDR platforms Tested with BladeRF [5] and

USRP B205MINI [6]

Linux distribution Ubuntu 14.04.3

Linux kernel version 3.13.0

Software dependencies • VLC 2.1.6-0-gea01d28

• libbladerf

• libuhd

Antenna OmniLOG 70600 Antenna

Receiver gain Between 20dB and 40dB

Transmitter gain Between 20dB and 35dB

Samples/symbol 2.25M

Sample rate 33.75M

Frame size 188 Bytes

6. RESULTS

Benchmarking tests included CPU usage, bit error rate, and

latency. The Linux utility, htop, was used to monitor CPU

usage of the transmitter software alone, the receiver alone,

and both the transmitter and receiver running

simultaneously. CPU usage was measured on an Intel Core

i7 and i3, as indicated in Table 2.

Table 2. htop DVBS CPU Usage Results

Laptop Features

HTop Reported CPU

Usage out of 100%

Tx/Rx Tx Rx

Dell

Precision

M2800

Intel® Core™ i7-

4610M CPU@3GHz

8GB RAM, 4CPUs

22% 8% 16%

Lenovo

L530

Intel® Core™ i3-

2348M CPU@2.3GHz

4GB RAM, 4CPUs

50% 24% 35%

Note that for quad-core processors, htop typically reports

results out of a maximum of 400% based on the utilization

of four cores. Here, results are normalized to 100%

maximum. On average, the overall CPU usage for the entire

system is relatively low. On a Dell Precision M2800 with an

Intel i7 processor with 4 CPUs, the lowest usage percentage

we achieved was 22% for the transceiver, 8% for the

transmitter only, and 14% for the receiver only.

Additionally, the RAM usage on the same platform

remained constant at 0.2%, which is a total usage of 16MB

out of the remaining 8GB.

 Processor usage increases with symbol rate as shown in

Figure 3. Normalized CPU usage increases as the symbol

rate is increased from 5.5 to 15.5 symbols. Note that the

transmitter usage is shown in blue and the receiver usage is

shown in orange.

Figure 3. DVB-S Htop CPU Usage vs Symbol Rate

BER tests were conducted by measuring bits in error from

fully synchronized MPEG2 frames at the receiver. Mock

MPEG frames 188 bytes in length were transmitted in 2ms

bursts with 10 frames/burst over a wired and wireless link.

Under stable synchronization, 13 repetitions of 90,000

bursts (900,000 total frames) were received with no

measured BER. In tests where synchronization was

unstable, measured BER was on the order of 4.5E-5.

Commercial DVB-S strives for BER on the order of 1E-10.

To statistically measure levels that low, approximately 1E12

bits needs to be transmitted continuously. We were unable to

transmit that much data at one time and maintain

synchronization.

 System latency is defined as the time between

generating a MPEG2 frame and decoding a received

MPEG2 frame, as shown in Figure 4. Table 3 shows the

mean latency in the DVB-S transceiver in a wired

environment (coaxial cable connecting the Tx and Rx RF

ports) with increasing test burst sizes and a constant period.

Table 3. DVBS Transceiver Latency (Wired)

Bursts Period Mean Latency (µs)
Standard Deviation

(µs)

100

100

49172 284

1000 49117 196

10000 49242 188

Figure 4. Latency Measurement Endpoints

The mean latency of our system hovers around 50

milliseconds despite the increase in the number of bursts that

are sent. Although increasing burst size has no effect on the

mean latency, it does reduce standard deviation of reported

latency as more are sent. We further compare the mean

latency of the DVB-S system to the set symbol rate shown in

Figure 5 below.

0

10

20

30

40

5.50 10.00 15.00 15.50

C
P

U
 U

sa
g

e
 (%

)

Symbol Rate (M)

htop CPU Usage vs. Symbol Rate

Tx CPU Usage Rx CPU Usage

15

20

25

30

35

40

45

50

5 10 15

M
e

a
n

 L
a

te
n

cy
 (

m
s)

Symbol Rate (M)

Mean Latency vs. Symbol Rate

Figure 5. DVB-S Latency vs. Symbol Rate

The set symbol rate directly effects the mean latency of the

system. As symbol rate is increased from 5.5 to 15.5

Msymbols, the mean latency decreases from 50ms to

approximately 17ms.

7. CONCLUSION

We presented software implementation of a DVB-S

transmitter and receiver where all I/Q processing is

performed in GPP. Key elements include taking advantage

of multiple processors through efficient threading and

optimal usage of AVX instructions. Our agile approach to

waveform development increases productivity and lends

itself to faster timelines and real-time troubleshooting due to

the flexibility of an all software implementation. Our

approach has been successfully applied across multiple

commercial and military waveforms.

 We successfully showed that real-time operation of both

transmitter and receiver I/Q digital processing is possible on

an i3 or better processor. Benchmark results indicate peak

normalized CPU usage at 50% for second generation i3

mobile processor, and 22% for a fourth generation i7 mobile

processor. Bit error performance was comparable to the

DVB-S waveform specification requirements when stable

synchronization is achieved, with system latencies measured

between 50ms and 17ms depending on the symbol rate.

8. ACKNOWLEDGEMENT

Approved for Public Release; Distribution Unlimited:

88ABW-2017-4648, 22 Sep 2017.This material is based

upon work supported by Air Force Research Laboratory

(AFRL/RITE) under Contract No. FA8750-15-C-0250. Any

opinions, findings, conclusions or recommendations

expressed in this material are those of the author (s) and do

not necessarily reflect the views of AFRL.

9. REFERENCES

[1] DVB-S Specification, EN 300 421 V1.1.2 (1997-08),

European Telecommunications Standards Institute,

www.etsi.org/deliver/etsi_en/300400_300499/300421/01.01.

02_60/en_300421v010102p.pdf

[2] G. Baruffa, L. Rugini and P. Banelli, "Design and Validation

of a Software Defined Radio Testbed for DVB-T

Transmissions," Radioengineering, vol. 23, pp. 387-398,

2014.

[3] Y. Jiang, W. Xu and C. Grassman, "Implementing a DVB-

T/H Receiver on a Software-Defined Radio Platform,"

International Journal of Digital Multimedia Broadcasting, vol.

009, p. 7, 2009.

[4] C. Fantozzi, L. Vangelista, D. Vorig and O. Campana, "SDR

Implementation of a DVB-T2 transmitter: The core building

blocks," IEEE International Conference on Consumer

Electronics (ICCE), Las Vegas, 2011.

[5] bladeRF Software Defined Radio (SDR), www.nuand.com

[6] USRP B205mini, Ettus Research, A National Instruments

Company, www.ettus.com/product/details/USRP-B205mini-i

