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Abstract—The upcoming 5G (5th Generation) networks de-
mand high-speed and high spectral-efficiency communications
to keep up with the proliferating traffic demands. To this end,
Massive multiple-input multiple-output (MIMO) techniques have
gained significant traction owing to its ability to achieve these
without increasing bandwidth or density of base stations. The
preexisting space-time block code (STBC) designs cannot achieve
a rate of more than 1 for more than two transmit antennas while
preserving the orthogonality and full diversity conditions.

In this paper, we present Jagannath codes - a novel complex
modulation STBC, that achieves a very high rate of 2 for three
and four transmit antennas. The presented designs achieve full di-
versity and overcome the previously achieved rates with the three
and four antenna MIMO systems. We present a detailed account
of the code construction of the proposed designs, orthogonality
and full diversity analysis, transceiver model and conditional
maximum likelihood (ML) decoding. In an effort to showcase the
improvement achieved with the presented designs, we compare
the rates and delays of some of the known STBCs with the
proposed designs. The effective spectral efficiency and coding
gain of the presented designs are compared to the Asymmetric
Coordinate Interleaved design (ACIOD) and Jafarkhani code.
We presented an effective spectral efficiency improvement by a
factor of 2 with the proposed Jagannath codes. Owing to the full
diversity of the presented designs, we demonstrate significant
coding gains ( 6 dB and 12 dB) with the proposed designs.

Index Terms—MIMO systems, space-time block codes, high-
rate, full diversity, spectral efficiency, maximum-likelihood decod-
ing, minimum decoding complexity, orthogonal designs, rate-2.

I. INTRODUCTION AND BACKGROUND

Massive multiple-input multiple-output (MIMO) has re-

ceived significant attention in recent years as a key enabling

technology for the 5G mobile communication systems [1].

Massive MIMO systems attain higher transmission rates owing

to the large number of antennas being used at the base station

(BS). Space-time block codes (STBC) is a well researched

topic in this regard for its ability to achieve higher transmission

rates by exploiting transmit antenna diversity [2]–[13]. In

1998, Alamouti proposed a simple transmit diversity scheme

[2] which exploited two transmit antennas. The Alamouti

scheme was consequently adopted in the Third Generation

(3G) Mobile standard.

STBC enables attaining higher levels of spectral efficiencies

for a fixed bandwidth and error-rate. In [14], [15] it has been

shown that STBC can achieve phenomenal increase in capacity

in contrast to single transmit/receive antenna systems. To be

in pace with the rapidly growing traffic [16], an imperative

design goal of 5G technologies is to improve area through-

put (bits/s/km2) which is directly related to the bandwidth,

base station density and spectral efficiency. Among these,

improving spectral efficiency without increasing the bandwidth

or base station density is attainable with superior MIMO

techniques. The increase in achievable spectral efficiency for

massive MIMO system and the effect of number of BS

transmit antennas was studied in [17]. The key to improving

the spectral efficiency for a MIMO system is by increasing

the coding rate of the STBC. In [18], a full-rate full-diversity

2× 2 STBC was proposed whose detection complexity scaled

quadratically with the cardinality of the signal constellation.

A full-rate linear receiver (FRLR) 2×2 STBC was introduced

in [8] which demonstrates satisfactory performance only for

binary phase shift keying (BPSK) and Quadrature Amplitude

Modulation-4 (QAM) constellations. Higher order modulation

support is essential for attaining higher spectral efficiency.

A full rate 2 × 2 STBC referred to as Golden code was

proposed in [9] but with a decoding complexity of O(Q4) for

a constellation cardinality of Q. In [10], a full-rate 2×2 STBC

with low complexity conditional ML decoding was presented.

Jafarkhani [11] proposed a 4× 4 STBC that achieves full-rate

by relaxing the orthogonality constraint. In [7], a 4× 3 rate-1

STBC design was proposed. Here again, the orthogonality is

compromised to achieve rate-1. Further, [19] proposed a rate-

3/4 generalized complex linear processing orthogonal design

for three and four transmit antennas.

Orthogonal STBC achieves full rate and allow single com-

plex symbol maximum-likelihood (ML) decoding for two

transmit antennas. The full rate vanishes as the number of

transmit antennas increase to more than two. In [12], [19], it

has been shown as per Hurwitz-Radon theorem that complex

orthogonal STBC cannot possess a full rate and maximum di-

versity. The rate-loss with complex signal constellations while

using more than two transmit antennas is the biggest drawback

of orthogonal STBCs. Therefore, STBCs that achieve higher

coding rates and minimal decoding complexities are preferred.

It has been conjectured that for square matrix embeddable

codes, the maximum achievable rate for three and four transmit

antennas is 3/4. The STBC designs presented in [11]–[13],

[20] achieve a rate not more than 1 for more than two transmit

antennas. In this work, we propose - full-diversity rate-2

orthogonal designs for three and four transmit antennas. To



the best of our knowledge, this is the first work in this domain

that has successfully achieved full diversity and rate-2 for three

and four transmit antenna systems.

The rest of this article is organized as follows: Section II

gives a brief overview of STBC and associated terminologies.

We present the proposed 4 × 3 and 4 × 4 Jagannath STBCs

and their analysis in section III. Section IV will discuss the

performance comparison of the proposed designs with known

STBCs. Finally, we conclude with our inferences and future

works in section V.

Notations: In the presented work, we will denote vectors

and matrices by lowercase and uppercase boldface letters. (.)H

and (.)∗ denotes Hermitian transpose of a vector or matrix

and complex conjugate operator. det(.) is used to indicate the

determinant of a matrix. The |.| and ⌈.⌉ indicate the absolute

value and ceil operators. Finally, ℜ(.) and ℑ(.) denote the real

and imaginary part of complex numbers.

II. SPACE-TIME BLOCK CODES

Space-time block coding refers to a channel coding tech-

nique that exploits antenna diversity. An STBC is a matrix of

size T×N with real or complex symbols and its conjugates or

their permutations in its entries. Here, N refers to the number

of transmit antennas and T denotes number of epochs over

which the symbols are sent from the N antennas. The simplest

complex orthogonal STBC proposed by Alamouti [2] is

C2 =

[

x1 x2

−x∗
2 x∗

1

]

(1)

a 2× 2 code that transmits two symbols x1 and x2 over two

channel uses (epochs).

Definition 1: Code rate - If a T×N STBC matrix transmits

S symbols over T channel uses, then the code rate is defined

as S/T symbols per channel use (symbols/s/Hz). Now, it is

straightforward to follow that the Alamouti code C2 provides

a rate of R = 2/2 = 1. Further, in [21], [22] the maximal rate

of a square matrix embeddable orthogonal STBC was found

to be

Rmax =
⌈log2 N + 1⌉
2⌈log2 N⌉ (2)

To achieve a rate beyond this established bound, the orthogo-

nality will need to be sacrificed.

Definition 2: Orthogonality - A generalized complex

T × N STBC matrix C with entries drawn from the set

{0,±x1, · · · ,±xn, · · · ,±x∗
1, · · · ,±x∗

n} or their product with

i =
√
−1 is said to be orthogonal [19] if C

H
C = D, where

D is a diagonal matrix with jth diagonal entry

D(j, j) = (cj1 |x1|2 + cj2 |x2|2 + · · ·+ cjn |xn|2) (3)

where the coefficients {cj1, cj2, · · · , cjn} are strictly positive

numbers. Similarly, a T × N generalized real orthogonal

STBC CR would have entries drawn set of real numbers

{0,±x1, · · · ,±xn} and diagonal matrix DR with jth diagonal

entry

DR(j, j) = (cj1x
2
1 + cj2x

2
2 + · · ·+ cjnx

2
n) (4)

and coefficients {cj1, cj2, · · · , cjn} are strictly positive numbers.

Considering a Rayleigh flat-fading channel H ∈ C
N×N

with independent identically distributed (i.i.d) entries from

CN (0, 1), the received symbol matrix for a N × N MIMO

transmission can be modeled as

Y =

√

ρ

N
CH+N (5)

where Y ∈ C
T×N is the received signal matrix, C ∈ C

T×N is

the STBC matrix, N ∈ C
T×N is the additive white Gaussian

noise matrix with i.i.d entries from CN (0, N0). Assuming

perfect channel state information (CSI) at the receiver, the

ML decoding metric can be expressed as

x̂ = argmin
x

||Y −CH||2F (6)

Here, if x is drawn from a constellation with cardinality Q,

the ML decoding complexity is given by O(Q).
Definition 3: Decoding Complexity - The minimum num-

ber of symbols that need to be jointly decoded in minimizing

the decoding metric defines the decoding complexity of a

MIMO system. A decoding complexity of O(Qk) implies an

exhaustive search over k information symbols from a signal

constellation with cardinality Q. Here O(.) denotes the big

omicron. ML decoding that can be expressed by the form in

equation (6) is also referred to as single-symbol decodable.

Definition 4: Spectral Efficiency - The measure of amount

of useful bits that are transmitted per channel use defines the

spectral efficiency of a STBC and can be expressed as

η = R log2 Q bits/s/Hz (7)

An STBC with a higher coding rate will, therefore, improve

the spectral efficiency of the MIMO system for a given

modulation.

Definition 5: Coding Delay - The number of epochs over

which the symbols of an STBC are transmitted is referred to

as the coding delay. This is the same as the block length of

the STBC. For a T × N STBC, the coding delay or block

length is T .

The 4 × 4 STBC proposed by Jafarkhani [11] is a Quasi-

orthogonal design that builds upon the Alamouti code. Ja-

farkhani code achieves a rate 1 by transmitting four complex

symbols over four channel uses. Let us denote the Alamouti

encoding of symbols x1 and x2 as C12 = C2. Now, the 4× 4
Jafarkhani STBC corresponding to symbols x1, x2, x3 and x4

take the form,

CJ =

[

C12 C34

−C34∗ C12∗

]

(8)

The Jafarkhani design demonstrates the rate increase

achieved by relaxing the orthogonality constraint. Hence,

defying the Rmax bound for complex orthogonal designs.

A rate-1 4× 3 non-orthogonal STBC design was proposed

in [7]. The structure again uses combinations of Alamouti

structure to transmit four symbols over four epochs from three

transmit antennas as,

CNO =

[

C12 −c34

C34 c12

]

(9)



where c12 = [x1 x2]
T and c34 = [x3 x4]

T . It is

straightforward to realize that R = 4/4 = 1 symbol/s/Hz.

Another class of STBC worth mentioning is the coordinate-

interleaved orthogonal design (CIOD). CIOD is obtained by

interleaving the coordinates of the symbols as proposed by

[20]. For instance, lets look at the CIOD for four transmit

antennas as represented by equation (11). Here, the quadrature

coordinates of the symbols {x1, x2, x3, x4} are interleaved.

Notice the orthogonality of this design,

C
H
CIODCCIOD =

[

AI2 02

02 BI2

]

(10)

where I2 and 02 are the 2×2 identity and zero matrices. Here,

A = ℜ(x0)
2+ℜ(x1)

2+ℑ(x2)
2+ℑ(x3)

2 and B = ℜ(x2)
2+

ℜ(x3)
2 + ℑ(x0)

2 + ℑ(x1)
2. It is intuitive that two different

columns are orthogonal to each other while the standard dot

product of different columns are different. It is also observable

that no cross terms of the form {ℜ(xk)ℜ(xl)} exist in A,B
implying single-symbol decodability. The authors of [20] also

proposed a 4 × 3 STBC design that derived from the 4 × 4
design in equation (11) by deleting the fourth column. The

design hence obtained is referred to as the Asymmetric CIOD

- ACIOD.

III. PROPOSED ORTHOGONAL DESIGNS

A. Jagannath 4× 3 STBC

The proposed rate-2 orthogonal design for three transmit

antennas is C
P3 as in equation (12). Here, we encode eight

symbols for transmission from three transmit antennas over

four channel uses resulting in a rate-2 transmission. For

ease of reference, let us denote the two symbol encoding as

J t
xi,xi+1

= xi sinαt − x∗
i+1 cosαt. The orthogonality of the

proposed design can be verified as

C
H
P3CP3 =





D 0 0
0 F 0
0 0 C



 (13)

where C =
∣

∣J1
x1,x2

∣

∣

2
+

∣

∣J2
x3,x4

∣

∣

2
, D =

∣

∣J1
x5,x6

∣

∣

2
+

∣

∣J2
x7,x8

∣

∣

2

and F = C + D. The columns of CP3 are orthogonal to

each other with the standard dot product of different columns

are different. Lets take a closer look at the received signal

model and the decoding. Consider a 3 × 3 MIMO system

with channel matrix H3 with i.i.d channel coefficients from

CN (0, N0). Each row of the channel matrix corresponds to

the channel vector between the three transmit antennas and

the receive antenna at the receiver. For ease of convenience,

we will denote each row as hr = [h0r, h1r, h2r], where

r = {0, 1, 2} represents the row and indexes the receive

antenna. The received signal at the ith receive antenna at the

four epochs is as in equation 14.









z1i
z2i
z3i
z4i









=

√

ρ

3
CP3hr +









n1
i

n2
i

n3
i

n4
i









(14)

This can be rewritten in the equivalent virtual channel

matrix (EVCM) form as

[

z1i
z2∗i

]

=

√

ρ

3

[

h1i h2i

h∗
2i −h∗

1i

] [

x1 sinα1 − x∗
2 cosα1

x3 sinα2 − x∗
4 cosα2

]

+

[

n1
i

n2∗
i

]

(15)

[

z3i
z4∗i

]

=

√

ρ

3

[

h0i h1i

h∗
1i −h∗

0i

] [

x5 sinα1 − x∗
6 cosα1

x7 sinα2 − x∗
8 cosα2

]

+

[

n3
i

n4∗
i

]

(16)

Assuming perfect CSI, the channel equalization would result

in

[

q1i
q2i

]

=

√

ρ

3

[

h∗
1i h2i

h∗
2i −h1i

] [

z1i
z2∗i

]

(17)

=

√

ρ

3
(|h1i|2 + |h2i|2)

[

x1 sinα1 − x∗
2 cosα1

x3 sinα2 − x∗
4 cosα2

]

+

[

g1i
g2∗i

]

[

q3i
q4i

]

=

√

ρ

3

[

h∗
0i h1i

h∗
1i −h0i

] [

z3i
z4∗i

]

(18)

=

√

ρ

3
(|h0i|2 + |h1i|2)

[

x5 sinα1 − x∗
6 cosα1

x7 sinα2 − x∗
8 cosα2

]

+

[

g3i
g4∗i

]

Now, the sufficient statistic to jointly estimate the symbols

x1 and x2 is

β1 =
1

3

2
∑

l=0

q1l . (19)

Likewise, the sufficient statistics to estimate the symbol pairs

{x3, x4}, {x5, x6}, and {x7, x8} are

β2 =
1

3

2
∑

l=0

q2l , β
3 =

1

3

2
∑

l=0

q3l , and β4 =
1

3

2
∑

l=0

q4l (20)

To allow conditional ML decoding from the sufficient

statistic, we will construct intermediate signals corresponding

to each as follows,

β̃i = βi −
√

ρ

27
Ψm[−x∗

2i cosαj ] (21)

where x2i is one of the Q constellation points, i = {1, 2, 3, 4}
denotes the epoch, m = {1, 2} and j = {1, 2} takes values

such that

m =

{

1 if i = {1, 2},

2 if i = {3, 4}.
(22)

j =

{

1 if i = {1, 3},

2 if i = {2, 4}.
(23)

Here Ψ1 =
∑2

p=0
(|h1p|2 + |h2p|2) and Ψ2 =

∑2

p=0
(|h0p|2 +

|h1p|2) respectively. The values for α1 and α2 are chosen

as in [10] to maximize the coding gain. The ML estimate

of the symbols x1, x3, x5, x7 conditional on x2, x4, x6, x8

respectively denoted by x2i−1|2i are obtained by feeding

the intermediate signals to a threshold detector. For each



CCIOD =









ℜ(x1) + jℑ(x3) ℜ(x2) + jℑ(x4) 0 0
−ℜ(x2) + jℑ(x4) ℜ(x1)− jℑ(x3) 0 0

0 0 ℜ(x3) + jℑ(x1) ℜ(x4) + jℑ(x2)
0 0 −ℜ(x4) + jℑ(x2) ℜ(x3)− jℑ(x1)









(11)

CP3 =









0 x1 sinα1 − x∗
2 cosα1 x3 sinα2 − x∗

4 cosα2

0 −x∗
3 sinα2 + x4 cosα2 x∗

1 sinα1 − x2 cosα1

x5 sinα1 − x∗
6 cosα1 x7 sinα1 − x∗

8 cosα1 0
−x∗

7 sinα1 + x8 cosα1 x∗
5 sinα1 − x6 cosα1 0









(12)

of the Q constellation points, the conditional ML estimate

that minimizes the following cost function yields the correct

symbol pair.

τ i =

∣

∣

∣

∣

βi −
√

ρ

12
Ψm

[

x2i−1|2i sinαj − x∗
2i cosαj

]

∣

∣

∣

∣

2

(24)

1) Full Diversity Analysis: Lets suppose that the two dis-

tinct 4 × 3 codeword matrices be X and U such that X is

constructed from entries {J1
x1,x2

, J2
x3,x4

, J1
x5,x6

, J2
x7,x8

} and

U from {J1
u1,u2

, J2
u3,u4

, J1
u5,u6

, J2
u7,u8

}. The difference matrix

X−U)P3 must be full rank for any two different codewords

[8], [23]. The difference matrix can be obtained as

(X−U)P3 =









0 J1
d1,d2

J2
d3,d4

0 −J2∗
d3,d4

J1∗
d1,d2

J1
d5,d6

J2
d7,d8

0

−J2∗
d7,d8

J1∗
d5,d6

0









. (25)

Now, we have

det{(X−U)HP3(X−U)P3} = (
∣

∣J1
d5,d6

∣

∣

2
+
∣

∣J2
d7,d8

∣

∣

2
)×

(
∣

∣J1
d1,d2

∣

∣

2
+
∣

∣J2
d3,d4

∣

∣

2
+

∣

∣J1
d5,d6

∣

∣

2
+
∣

∣J2
d7,d8

∣

∣

2
)×

(
∣

∣J1
d1,d2

∣

∣

2
+
∣

∣J2
d3,d4

∣

∣

2
).
(26)

where Jj
di,di+1

= (x1−u1) sinαj−(x2−u2)
∗ cosαj . It can be

easily verified that the three terms of equation (26) are positive

scalars. Consequently, the proposed 4×3 STBC achieves full-

rank and hence full diversity.

B. Jagannath 4× 4 STBC

The proposed rate-2 STBC for four transmit antennas is

CP4 as in equation (28). The orthogonality of the proposed

rate-2 STBC can be verified by

C
H
P4CP4 =

[

CI2 02

02 DI2

]

(27)

Here, the columns are orthogonal to each other but the dot

product of different columns are different. The channel matrix

of the 4 × 4 MIMO system can be denoted as H
4, whose

row hr = [h0r, h1r, h2r, h3r], r = {0, 1, 2, 3}. Now, the

received signal at the ith antenna during the four epochs can

be represented as









z1i
z2i
z3i
z4i









=

√

ρ

4
CP4hr +









n1
i

n2
i

n3
i

n4
i









(29)

In a similar manner to the 4 × 3 STBC, we will rewrite the

equation (29) to the EVCM form as in equation (30). The

channel equalization would yield the expression in equation

(35). The sufficient statistics and the intermediate symbol

representation to decode the symbol pairs can be obtained in

a similar manner as

βi =
1

4

3
∑

l=0

qil . (31)

β̃i = βi −
√

ρ

64
Ψm[−x∗

2i cosαj ] (32)

τ i =

∣

∣

∣

∣

βi −
√

ρ

64
Ψm

[

x2i−1|2i sinαj − x∗
2i cosαj

]

∣

∣

∣

∣

2

(33)

For each of the Q constellation points, the conditional ML

estimate (x2i−1|2i) that minimizes the cost function (33) yields

the correct symbol pair. Here, i,m, j mean the same notations

as in the 4× 3 STBC case while

Ψ1 =
3

∑

p=0

(|h0p|2 + |h1p|2), Ψ2 =
3

∑

p=0

(|h2p|2 + |h3p|2). (34)

The conditional ML decoding procedure presented for both

the proposed designs presents very low decoding complexity

of O(Q). A noticeable tradeoff of the proposed designs is

the unequal energy on the antennas due to the transmission

of zeros in the codeword. The energy can be normalized by

multiplying the 4 × 4 STBC with a normalized Hadarmard

matrix of order 4 prior to transmission and performing the

reverse operation by multiplying by the transpose of Hadamard

matrix. Similarly, the 4× 3 STBC can be efficiently precoded

to minimize the peak to average power ratio. The appropriate

precoding for both the proposed 4× 3 and 4× 4 designs will

be the subject of our future research.

1) Full Diversity Analysis: The full diversity

characteristics of the proposed 4×4 STBC will be analyzed in

this section. Let the two distinct 4×4 codeword matrices be X

and U each formed of entries {J1
x1,x2

, J2
x3,x4

, J1
x5,x6

, J2
x7,x8

}
and {J1

u1,u2
, J2

u3,u4
, J1

u5,u6
, J2

u7,u8
} respectively. Let the



CP4 =









x1 sinα1 − x∗
2 cosα1 x3 sinα2 − x∗

4 cosα2 0 0
−x∗

3 sinα2 + x4 cosα2 x∗
1 sinα1 − x2 cosα1 0 0

0 0 x5 sinα1 − x∗
6 cosα1 x7 sinα1 − x∗

8 cosα1

0 0 −x∗
7 sinα1 + x8 cosα1 x∗

5 sinα1 − x6 cosα1









(28)









z1i
z2∗i
z3i
z4∗i









=

√

ρ

4









h0i h1i 0 0
h∗
1i −h∗

0i 0 0
0 0 h2i h3i

0 0 h∗
3i −h∗

2i

















x1 sinα1 − x∗
2 cosα1

x3 sinα2 − x∗
4 cosα2

x5 sinα1 − x∗
6 cosα1

x7 sinα1 − x∗
8 cosα1









+









n1
i

n2∗
i

n3
i

n4∗
i









(30)









q1i
q2i
q3i
q4i









=

√

ρ

4









(|h0i|2 + |h1i|2) 0 0 0

0 (|h0i|2 + |h1i|2) 0 0

0 0 (|h2i|2 + |h3i|2) 0

0 0 0 (|h2i|2 + |h3i|2)

















x1 sinα1 − x∗
2 cosα1

x3 sinα2 − x∗
4 cosα2

x5 sinα1 − x∗
6 cosα1

x7 sinα1 − x∗
8 cosα1









+









g1i
g2i
g3i
g4i









(35)

difference matrix (X−U)P4 contain the elements

{J1
d1,d2

, J2
d3,d4

, J1
d5,d6

, J2
d7,d8

}. Here, we can express the

full diversity criterion as,

|det{(X−U)P4}|2 =

=
∣

∣

∣
(
∣

∣J1
d1,d2

∣

∣

2
+
∣

∣J2
d3,d4

∣

∣

2
)
∣

∣

∣

2 ∣
∣

∣
(
∣

∣J1
d5,d6

∣

∣

2
+
∣

∣J2
d7,d8

∣

∣

2
)
∣

∣

∣

2 (36)

Clearly, equation (36) is a positive scalar. Hence, the full

diversity of the proposed 4× 4 STBC is lucidly stated.

In Table I, we compare the rates and delays of some of the

known STBCs with the proposed designs. It is noticeable that

TABLE I
COMPARISON OF RATE AND DELAY OF KNOWN STBCS WITH THE

PROPOSED DESIGNS

Design TX antennas Rate Delay

Jagannath 4× 3 3 2 4
Jagannath 4× 4 4 2 4
ACIOD [20] 3 1 4
CIOD [20] 4 1 4
Jafarkhani [11] 4 1 4
Ozbek.et.al [7] 3 1 4
Tarokh et. al [19] 3 3/4 4
Tarokh et. al [19] 4 3/4 4
Grover et. al [24] 4 1 8

the proposed designs offer very high rate of 2 in comparison

to the known STBCs without exceeding the minimum delay

presented by the compared schemes.

IV. SIMULATION RESULTS

In this section, we present the simulation results of the

proposed 4× 3 and 4× 4 Jagannath codes with some known

designs. We will use the effective spectral efficiency defined

as,

η = [1− SER]R log2 Q (37)

and Signal-to-Noise ratio (SNR)/Coding gain as the key

performance metrics to benchmark the proposed designs.

Here, SER denotes the symbol error rate. For three transmit

antennas, we compare the proposed 4 × 3 STBC with the

ACIOD design for three transmit antennas. While the proposed

4× 4 design is compared to the Jafarkhani 4× 4 STBC. The

simulations are performed with flat-fading Rayleigh channel

in additive white Gaussian noise with i.i.d as mentioned in

section II. Each data point on the curve is an average over

10,000 repetitions. Figure 1 compares the effective spectral

efficiency of the proposed designs with that of ACIOD and

Jafarkhani using QAM-4 modulation scheme. With QAM-4

modulation, the maximum achievable spectral efficiency for

the proposed designs is 4 bits/s/Hz while that of ACIOD and

Jafarkhani are 2 bits/s/Hz. All designs achieve their maximum

achievable spectral efficiency at an SNR of 10 dB and above.

The spectral efficiency gain by a factor of 2 achieved with the

proposed designs is noticeable in Fig.1.
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Fig. 1. Spectral efficiency performance of the proposed designs

Figure 2 benchmarks the SER performance of the proposed

designs at a fixed spectral efficiency (4 bits/s/Hz) with that

of ACIOD and Jafarkhani. The ACIOD and Jafarkhani use

QAM-16 to attain a spectral efficiency of 4 bits/s/Hz. We
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Fig. 2. SNR Gain of Proposed designs at 4 bits/s/Hz spectral efficiency

compare the rotated and unrotated versions of ACIOD since

the authors of [20] has shown that their design achieves full

diversity only when the QAM constellation is rotated at an

angle 31.7175◦. Even though all designs start off at a compa-

rable SER, the performance of the proposed Jagannath codes

significantly improves with increasing SNR owing to their

full diversity property. The substantial coding gain achieved

with the proposed designs is observable at approximately

6 dB and 12 dB for the 4 × 4 and 4 × 3 configurations

respectively. This performance gain can be attributed to the

full diversity property of the proposed designs while the

Jafarkhani design only provides partial diversity. The unrotated

version of ACIOD cannot achieve full diversity and hence

performs poorly. Comparing the rotated and unrotated versions

of ACIOD with each other, the benefit from rotating the

constellation can be faintly noted at higher SNR values.

V. CONCLUSION AND FUTURE WORKS

This work presented very high rate (2) Jagannath codes that

achieves full diversity pertaining to three and four transmit an-

tennas. We have detailed the STBC construction, orthogonality

and diversity analysis, transceiver model, and decoding of the

proposed designs. The conditional ML decoding presented a

low decoding complexity of O(Q). Such a design with very

high rate and low complexity decoding are generally preferred

in practical applications. To the best of our knowledge, this

is the first work in this realm that presented rate-2 designs

for three and four transmit antenna systems. The previously

known designs [7], [11], [19], [20], [24] for three and four

transmit antennas could not support a rate more than 1. We

have demonstrated the increased spectral efficiency and coding

gains achieved with the proposed designs in comparison to the

Jafarkhani [11] and ACIOD [20]. The future work will entail

appropriate precoding strategies for the proposed designs and

extending the designs to higher antenna configurations.
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